

Comparison of Stacking-based Classifier Ensembles using Euclidean and Riemannian Geometries

Vitaliy Tayanov, Adam Krzyżak, Ching Y. Suen Concordia University, Montreal, Canada

Introduction

The objective of this research is to implement a generalized classifier stacking which is a simple classifier stacking and cascades of classifier ensembles in Riemannian geometry. To this end we:

- Built a homotopy diagram which shows all data transformation to be accomplished in linear space and on Riemannian manifolds.
- Developed an algorithm that exploits classifier interactions to build new patterns which are at the same time points on the Riemannian manifold.
- Carried out multiple experiments showing advantaged of application of Riemannian geometry for classifier stacking. The experiments have been done for different data sets, especially for Gesture Recognition dataset.

Algorithm

Assume that we have L classes and we have a vector of prediction probabilities for each classifier that the given probe

Riemannian manifolds

The space of $d \times d$ SPD matrices Sym^d_+ is an open convex cone

$$Sym_{+}^{d} = \bigcap_{x \in \mathbb{R}^{d}} \{ \mathbf{P} \in Sym^{d} : \mathbf{x}^{T}\mathbf{P}\mathbf{x} > 0 \}$$
(1)

belongs to some of L classes. Those predictions are conditional probabilities $p(y = c_{\ell}|X)$, where c_{ℓ} is the ℓ th class, $\ell = 1, ..., L$. Let us assume that we have T classifiers in ensemble. Then we compose a tensor **T** of size $T \times T \times L$, where for each class $C_{\ell}, \ell = 1, ..., L$ we have a CPPM $\mathbf{A}^{\ell}(x) T \times T$ with elements $a_{ij}^{\ell}, \{i, j\} = 1, ..., T$:

$$a_{ij}^{\ell}(x) = p_i(y = c_{\ell}|X)p_j(y = c_{\ell}|X) = h_i^{\ell}(x)h_j^{\ell}(x), i \neq j; a_{ij}^{\ell} = p_i(y = c_{\ell}|X) = h_i^{\ell}, i = j.$$

$$(4)$$

Since a space of SPD matrices is a tangent space the orthonormal coordinates of a tangent vector \mathbf{y} in this space at point \mathbf{X} are given by

$$\operatorname{vec}_{\mathbf{X}}^{\ell}(\mathbf{y}) = \operatorname{vec}_{\mathbf{I}}^{\ell}(\mathbf{A}^{\ell}),$$
(5)

where $\operatorname{vec}_{\mathbf{I}}(\mathbf{y}) = \left[y_{1,1}, \sqrt{2}y_{1,2}, \sqrt{2}y_{1,3}, \dots, y_{2,2}, \sqrt{2}y_{2,3}, \dots, y_{d,d}\right]^T$. If want to take into the consideration the geometry of the R-manifold we have to compute the orthonormal coordinates in a flattened space by vectorizing the projection matrix decomposed using Singular Value Decomposition (SVD):

$$\operatorname{vec}_{\mathbf{X}}^{\ell}(\mathbf{y}) = \operatorname{vec}_{\mathbf{I}}^{\ell} \left(\operatorname{Proj}(\mathbf{A}^{\ell}) \right) = \operatorname{vec}_{\mathbf{I}}^{\ell} \left(\mathbf{U}^{\ell} \log(\mathbf{S}^{\ell}) (\mathbf{U}^{\ell})^{T} \right).$$

Experiments

Classification accuracy as a function of the number of cascades of RFs (first row) and ETs (second row) plotted for three experiments from Gesture Phase Segmentation data set. Depth of decision trees in RFs and ETS is equal to 5 in all three experiments.

(6)

A pair of Gauss maps for the log Eucliden metric can be written as follows

$$\exp_{\mathbf{P}}(\mathbf{\Delta}) = \exp(\log(\mathbf{P}) + \mathbf{\Delta}) = \mathbf{Q}$$
$$\log_{\mathbf{P}}(\mathbf{Q}) = \log(\mathbf{Q}) - \log(\mathbf{P}) = \mathbf{\Delta} \qquad (2)$$

Geodesic on Sym^d_+ can be computed as

$$d(\mathbf{P}, \mathbf{Q}) = ||\log(\mathbf{Q}) - \log(\mathbf{P})||_F \qquad (3)$$

Data s	ets							
Gesture	Phc	nse Segi	mentatio	n da	ta set			
data set	size	features	classes	Tr , %	Ts , %			
gesture-raw1	l 1747	18	5	50	50			
gesture-raw2	2 1264	18	5	50	50			
gesture-raw3	3 1834	18	5	50	50			
gesture-raw4	1 1073	18	5	50	50			
gesture-raw5	5 1424	18	5	50	50			
gesture-raw6	6 1111	18	5	50	50			
gesture-raw7	7 1448	18	5	50	50			
Data sets of general character from UCI repository								
dataset	size	features	classes	Tr, %	T s, %			
balance	625	4	3	50	50			
bupa	345	6	2	50	50			
gamma	19200	10	2	50	50			
german	1000	24	2	50	50			
heart	270	13	2	50	50			
mfeat-mor	2000	6	10	50	50			
mfeat-zer	2000	47	10	50	50			
pima	768	8	2	50	50			
segment	2310	19	7	50	50			
		0.0	0	50	50			
sonar	208	60	Z	30	50			

IP R nonlinear	58.26 ± 0.50	$11 \ 70 \pm 2 \ 85$	10.68 ± 0.00	1850 ± 521	52.60 ± 10.04	$RF - nonlinear_{max}$	$90,29 \pm 1,52$	$89,98 \pm 0,86$	$92, 16 \pm 1, 14$	$89,81 \pm 1,10$	$90,08 \pm 1,45$	$86,40 \pm 1,54$	$87,00 \pm 1,08$
$\frac{DI}{MID} = \frac{1}{D} \frac{1}{D}$	$30, 20 \pm 9, 39$	$11, 10 \pm 2, 00$	$10,00 \pm 0,99$	$10, 50 \pm 5, 21$	$52,09 \pm 10,94$	$RF - linear_{max}$	$\overline{89.41 \pm 1.22}$	$\overline{89.29 \pm 0.92}$	91.48 ± 1.18	$\overline{89.35 \pm 1.25}$	$\overline{88.82 \pm 1.69}$	85.27 ± 1.20	$\overline{85.88 \pm 1.23}$
MLP - R - linear	$61, 69 \pm 8, 19$	$17,38 \pm 3,20$	$12,28 \pm 2,32$	$24,65 \pm 4,95$	$50,38 \pm 9,65$	CNN - R - nonlinear	$80 01 \pm 1 30$	89.46 ± 0.83	$92 34 \pm 1 00$	80.20 ± 1.02	80.31 ± 1.27	$\frac{86}{20} + 1 \frac{31}{21}$	$\frac{86}{86}$ 31 + 0.81
NN - R - nonlinear	$73,78 \pm 3,57$	$73,00\pm0,48$	$77,28\pm0,97$	$95,97\pm0,49$	$egin{array}{c c c c c c c c c c c c c c c c c c c $		$00,01 \pm 1,00$	$00, 40 \pm 0, 00$	$52, 54 \pm 1, 00$	$05, 25 \pm 1, 02$		$00, 25 \pm 1, 51$	00, 94 ± 0, 04
CNN - R - linear	$73,02 \pm 3,66$	$\overline{\textbf{73,}44\pm0,68}$	$\overline{77,71\pm0,75}$	$\overline{\textbf{96,38}\pm\textbf{0,62}}$	$80,67 \pm 1,90$	CNN - R - linear	$90,67 \pm 1,14$	$\textbf{90}, \textbf{33} \pm \textbf{1}, \textbf{16}$	$\boldsymbol{93,04\pm1,06}$	$\textbf{90}, \textbf{73} \pm \textbf{1}, \textbf{31}$	$\textbf{90}, \textbf{45} \pm \textbf{1}, \textbf{22}$	$87,27\pm1,53$	$87, 87 \pm 1, 14$
A number o	of decision trees in	n the ETs are equ	$\frac{1}{1}$ and $\frac{1}{100}$ and $\frac{1}{100}$	depth is equal to	<u> </u>	SVM(RBF) - stacking	$89,15 \pm 1,54$	$89,95 \pm 1,15$	$91,55 \pm 0,83$	$87,09 \pm 1,50$	$89,41 \pm 1,73$	$86,98 \pm 1,60$	$86,71 \pm 1,33$
$ET = \begin{bmatrix} 64 & 01 + 5 & 08 \\ 69 & 50 + 0 & 66 \\ 74 & 61 + 1 & 30 \\ 89 & 79 + 1 & 14 \\ 78 & 85 + 3 & 10 \\ 85 & 70 & 10 \\ 78 & 85 + 3 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ 78 & 10 & 10 \\ $					Number of decision trees in an ETs is equal to 50 and its depth is equal to 2								
ET	69.24 ± 3.01		-	91.66 ± 1.05	$70,00 \pm 3,10$ 79,71 + 3,43	RF_1	$74,98\pm0,75$	$68,97 \pm 1,00$	$62,99 \pm 0,92$	$45,90 \pm 2,21$	$49,90 \pm 2,95$	$58,62 \pm 3,01$	$55,40 \pm 3,11$
	$00, 24 \pm 0, 01$			$\begin{array}{c} 51,00 \pm 1,00 \\ 00.05 \pm 4.10 \end{array}$	$70, 11 \pm 0, 40$	RFmax	$76,99 \pm 1,53$	$71,90 \pm 1,51$	68.21 ± 2.36	50.00 ± 3.03	$54,23 \pm 2,51$	60.81 ± 2.37	$59,92 \pm 2,62$
$EI - nonlinear_{max}$	$69,07 \pm 3,73$	$62,65 \pm 4,95$	$12,54 \pm 1,39$	$80,05 \pm 4,10$	$79,33 \pm 4,33$	RE nonlinear	77.87 ± 1.91	73.06 ± 1.64	70.02 ± 1.58	$55, 51 \pm 4, 56$	56.76 ± 1.50	63.21 ± 2.55	61.15 ± 2.46
$ET - linear_{max}$	$68, 31 \pm 2, 10$	$62,01 \pm 3,46$	$73,64 \pm 0,93$	90, $82 \pm 3, 18$	$78, 17 \pm 2, 82$	$\Pi I = \Pi O \Pi I \Pi e a I_{max}$	$\frac{11,01\pm1,21}{11,01}$	$73,90 \pm 1,04$	$10, 92 \pm 1, 50$	$00,01 \pm 4,00$	$50, 70 \pm 1, 59$	$03,21 \pm 2,00$	$01, 10 \pm 2, 40$
SVM - stacking	67.73 ± 2.84	69.71 ± 0.57	72.83 ± 0.69	91.55 ± 1.21	79.90 ± 3.14	$RF - linear_{max}$	$77,84 \pm 0,78$	$73,58 \pm 1,07$	$68, 78 \pm 1, 48$	$61, 15 \pm 3, 75$	$55,74 \pm 2,59$	$63, 41 \pm 1, 86$	$60, 69 \pm 2, 38$
$\frac{N}{M} - R - nonlinear$	68.43 ± 3.53	$65, 40 \pm 1, 99$	38.65 ± 3.56	89.84 ± 1.32	79.52 ± 2.85	CNN - R - nonlinear	$87, 14 \pm 1, 66$	$85,92 \pm 1,43$	$87,21 \pm 0,68$	$81,73 \pm 2,34$	$83,89 \pm 2,03$	$80,40 \pm 2,43$	$84,03\pm1,51$
SVM P lincar	$50, 20 \pm 3, 00$	60.88 ± 0.60	$78,40\pm0,61$	02.85 ± 1.15	$76, 25 \pm 2, 21$	CNN - R - linear	$88, 07 \pm 1, 67$	$\mathbf{87, 15} \pm \mathbf{1, 65}$	$87,75\pm0,54$	$83, 48 \pm 2, 95$	$\textbf{83}, \textbf{89} \pm \textbf{1}, \textbf{69}$	$81, 55 \pm 1, 94$	$83, 49 \pm 1, 39$
$\frac{3V}{N} = \frac{1}{N} = \frac{1}{N}$	$39,30 \pm 3,04$	$09,00\pm 0,09$	$76, 40 \pm 0, 01$	$92,00 \pm 1,10$	$70,30 \pm 3,31$	SVM(RBF) - stacking	81.69 ± 1.00	78.51 ± 2.20	82.88 ± 1.00	71.34 ± 2.61	73.19 ± 2.74	77.28 ± 2.97	79.41 ± 1.69
kNN - stacking	$66, 86 \pm 3, 41$	$67,93 \pm 1,00$	$75,89 \pm 0,83$	$95,40 \pm 0,97$	$79,33 \pm 3,73$	Still (ItET) statiting	<u>Nameh ar</u>		$52,00 \pm 1,00$	+ 1,01 ± 2,01		, === =, =:	10, 11 ± 1,00
NN - R - nonlinear	$67,03 \pm 2,97$	$67, 43 \pm 1, 04$	$70,95 \pm 1,80$	$95,28\pm0,68$	$79,33 \pm 2,99$	Number of decision trees in an Eris is equal to 50 and its depth is equal to 5							
kNN - R - linear	63.31 ± 1.48	67.71 ± 1.41	76.02 ± 0.98	95.30 ± 1.17	76.83 ± 3.83	RF_1	$78,24 \pm 1,40$	$77,88 \pm 1,79$	$77,20 \pm 2,01$	$72, 33 \pm 3, 65$	$70,62 \pm 1,87$	$74, 30 \pm 2, 06$	$72,75\pm 2,38$
MLP - stacking	$40, 06 \pm 7, 72$	14.08 ± 4.75	$14 \ 46 + 4 \ 32$	19.04 + 6.39	48,75+6,79	RF_{max}	$87,93\pm0,95$	$87,93 \pm 0,86$	$88,94 \pm 1,39$	$88,70 \pm 1,36$	$85,52 \pm 1,53$	$82, 52 \pm 1, 73$	$84, 46 \pm 1, 83$
I D D monlinear	$40,00 \pm 1,12$ 50.77 ± 6.28	$14,00\pm 4,10$ 11.26 \pm 2.20	$14, 40 \pm 4, 02$ $10, 21 \pm 0.60$	$10,04\pm 0,05$ 20 44 ± 5.24	$40, 75 \pm 0, 75$ 50 77 ± 6 84	$RF-nonlinear_{max}$	$88,58 \pm 1,42$	$88,39 \pm 0,80$	$90,05 \pm 0,81$	$89,01 \pm 1,32$	$86, 33 \pm 1, 33$	$84,37 \pm 2,10$	$84,85 \pm 1,73$
LF = R = nonlinear	$39,11\pm0,28$	$11, 20 \pm 2, 20$	$10, 31 \pm 0, 09$	$20,44 \pm 0,54$	$50, 77 \pm 0, 84$	BF - linear	87.79 ± 0.87	87.59 ± 1.26	88.33 ± 1.62	87.56 ± 1.18	$84 61 \pm 1 47$	82.07 ± 1.72	83.20 ± 2.22
MLP - R - linear	$58,37 \pm 8,77$	$12,76 \pm 2,49$	$11,62 \pm 2,30$	$16,73 \pm 3,90$	$57,79 \pm 1,40$		$\frac{01,19\pm0,01}{00,00\pm0,00}$	$01, 05 \pm 1, 20$	$00,00 \pm 0,02$	$01,00 \pm 1,10$	$01,01 \pm 1,11$	$02,01 \pm 1,12$	$00,20 \pm 2,22$
NN - R - nonlinear	$\overline{\textbf{71},\textbf{10}\pm\textbf{2},\textbf{47}}$	$73,50\pm 0,84$	$78,52 \pm 0,89$	$95,42\pm0,69$	$81,25\pm 3,14$	$C_{IN}IN - K - nonlinear$	$89,28 \pm 0,98$	$89,41 \pm 1,13$	$90,88 \pm 0,66$	$89,39 \pm 2,14$	$89,14 \pm 1,04$	$80,22 \pm 1,79$	$80,93 \pm 1,52$
CNN - R - linear	67.97 ± 2.09	$\overline{\textbf{73,53}\pm0,97}$	$\overline{\textbf{79.14}\pm\textbf{0.99}}$	95.66 ± 0.68	$\overline{81.64 \pm 2.90}$	CNN - R - linear	$90, 90 \pm 0, 86$	$89,98\pm0,93$	$92,06 \pm 1,05$	$90, 15\pm0, 92$	$90,00\pm0,98$	$87, 43 \pm 1, 47$	$87,89\pm1,35$
	,,	,,,	, , , , , , , , , , , , , , , , , , , ,	,,,,	- , , - •	SVM(RBF) - stacking	$87, 49 \pm 1, \overline{41}$	$87,63 \pm 0,\overline{93}$	$88, 17 \pm 1, 22$	$85, 49 \pm 1, 85$	$86, 18 \pm 1, \overline{19}$	$85,00 \pm 1,65$	$85,46 \pm 1,60$

Conclusions

Our experiments confirm that application of Riemannian geometry for classifier stacking such as simple stacking or cascades of classifier ensembles is advantageous. Riemannian geometry is especially useful for nonlinear problems such as Gesture Phase data set. Riemannian manifolds allow to use less cascades in case of recursive classifier stacking realized via classifier cascades.