Tanwi Mallick¹, Prasanna Balaprakash¹, Eric Rask¹, and Jane Macfarlane² ¹Argonne National Laboratory and ²Lawrence Berkeley National Laboratory

Traffic forecasting:

•Input: road network and past T' traffic speed

•Output: traffic speed for the next T steps



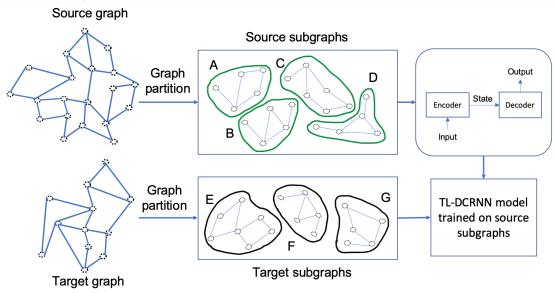
8.00 AM ... 9.00AM

9.00 AM ... 10.00AM

Problem: Forecast traffic in absence of location specific network and historical time series data

Proposed model:

Transfer learning Diffusion convolutional recurrent neural network (TL-DCRNN)

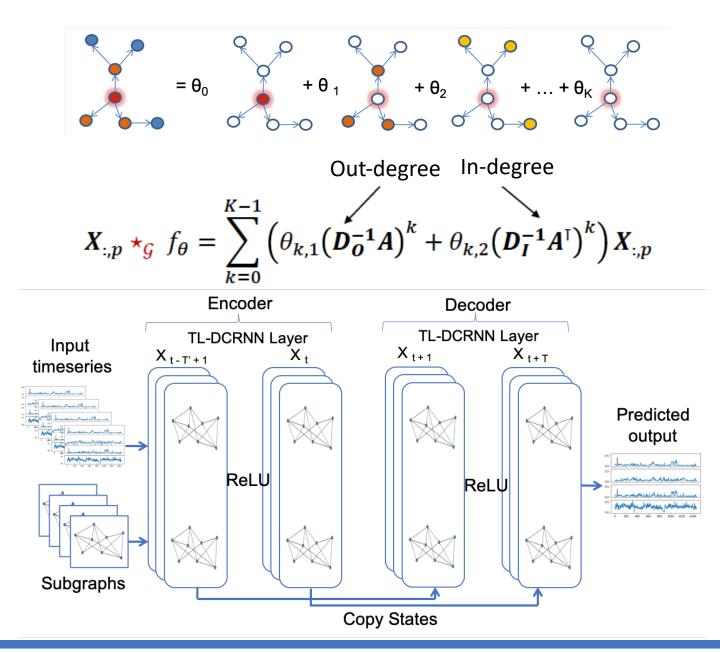


Tanwi Mallick¹, Prasanna Balaprakash¹, Eric Rask¹, and Jane Macfarlane² ¹Argonne National Laboratory and ²Lawrence Berkeley National Laboratory

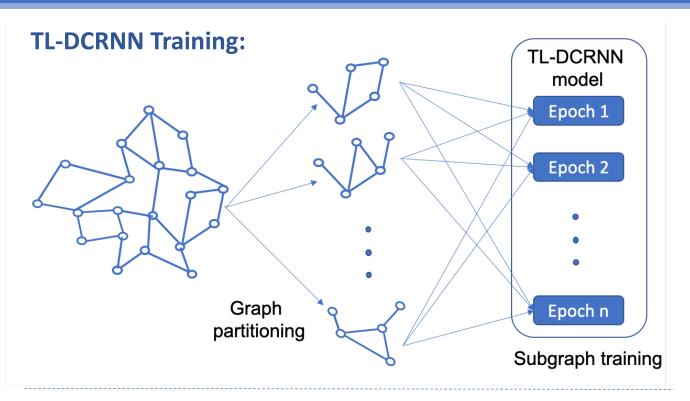
Methodology:

Capturing the road network in terms of graphs

- Transportation network as graph
 - V = Vertices (sensors)
 - E = Edges (roads)
 - A = Weighted adjacency matrix (A function of the road network distance)



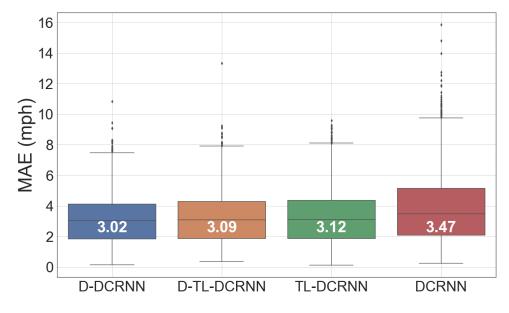
Tanwi Mallick¹, Prasanna Balaprakash¹, Eric Rask¹, and Jane Macfarlane² ¹Argonne National Laboratory and ²Lawrence Berkeley National Laboratory



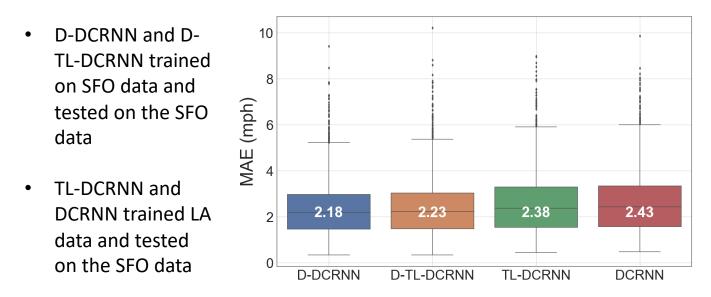
Results:

Transfer learning between LA and SFO regions PeMS dataset 2018: LA (2,716 sensors) and SFO (2,382 sensors)

- D-DCRNN and D-TL-DCRNN trained on LA data and tested on the LA data
- TL-DCRNN and DCRNN trained on SFO data and tested on the LA data

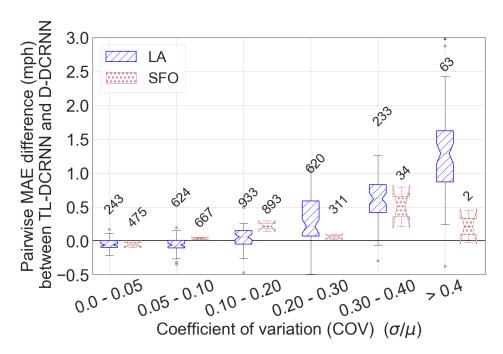


Tanwi Mallick¹, Prasanna Balaprakash¹, Eric Rask¹, and Jane Macfarlane² ¹Argonne National Laboratory and ²Lawrence Berkeley National Laboratory



TL-DCRNN outperformed DCRNN on LA and SFO

Pairwise MAE differences between TL-DCRNN and D-DCRNN and with respect to Coefficient of variance (COV) values



These results imply that when the traffic is less dynamic, transfer learning will be as good as the direct learning.

Tanwi Mallick¹, Prasanna Balaprakash¹, Eric Rask¹, and Jane Macfarlane² ¹Argonne National Laboratory and ²Lawrence Berkeley National Laboratory

Comparison with other methods:

- TL-DCRNN trained on LA dataset and tested on the PEMS-BAY
- Other models trained and tested on PEMS-BAY

	Method	MAE	RMSE	MAPE
	Training and testing on PEMS-BAY			
TL-DCRNN	ARIMA [13]	3.38	6.50	8.30%
outperformed number of traffic	SVR [14]	3.28	7.08	8.00%
	FNN [15]	2.46	4.98	5.89%
	FC-LSTM [4]	2.37	4.96	5.70%
forecasting	STGCN [16]	2.49	5.69	5.79%
methods	DCRNN [6]	2.07	4.74	4.90%
	GMAN [17]	1.86	4.32	4.31%
	Training on LA and testing on PEMS-BAY			
	TL-DCRNN	2.13 ± 1.09	5.23 ± 2.29	5.55 ± 4.34

All models are trained on LA dataset and tested on the PEMS-BAY

Models	MAE	RMSE	MAPE
STGCN [16]	6.53 ± 2.69	10.07 ± 3.47	$13.31 \pm 6.38 \%$
FC-LSTM [4]	4.69 ± 1.79	8.48 ± 3.17	$12.32 \pm 8.78 \%$
GMAN [17]	4.05 ± 1.56	7.57 ± 2.51	8.5 ± 4.58 %
DCRNN [6]	3.3 ± 1.24	6.91 ± 2.19	8.21 ± 5.57 %
TL-DCRNN	2.13 ± 1.09	5.23 ± 2.29	5.55 ± 4.34 %

TL-DCRNN outperformed all state-of-the-art traffic forecasting methods in a transfer learning setting

Conclusion and future work:

- TL-DCRNN allow practitioners to apply data-driven methods trained on datasets collected elsewhere
- Enabling a wide range of transportation system operations operate efficiently in reduced infrastructure and data acquisition cost
- In future, we will work on deployment strategies for traffic management systems across the country

