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Ghost Target Detection
What are ghost targets:
• A real radar measurement is caused by direct incident and reflected 

radio waves
• A ghost radar measurement is caused by multi-path radio waves
• A multi-path wave is caused by either an indirect incident or reflected 

wave, or both
Detection approaches:
• Model based: Roos et al. [1] compare measured velocity vector 

orientation to the orientation of the vehicle model and a mismatch 
between the orientations indicates a ghost target
à Models can be inaccurate, and not representable of real driving 
scenarios

• Data driven:
• Ryu et al. [2] use a fixed traffic control radar and hand-crafted 

features to train a multilayer perceptron
• Prophet et al. [3] compare random forest classifiers to support 

vector machines and k-nn algorithms
• Garcia et al. [4] use an encoder-decoder deep CNN to detect 

ghost targets in low resolution 2D radar data
à Current approaches can’t deal with high resolution and 3D radar 
point clouds

Detection Evaluation
• Used class-balanced loss to counteract imbalances in data.
• Used cross validation for evaluation.

Discussion:
• The changes introduced to the network significantly improved the 

results
• The combination of adding spherical coordinate inputs and vehicle 

state information caused the biggest improvement
• A small additional improvement was seen when adding a skip 

connection for tighter input-output correlation
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• The field of autonomous driving is of an ever-rising importance in the 
automotive industry

• Radar sensors have been an integral part of driver assistant systems 
but are now being tasked in adding more autonomy to vehicles

• To achieve higher levels of autonomy, robust detection and tracking of 
obstacles and other road users is necessary

• Due to the nature of their operation, radar sensors are susceptible to 
the problem of ghost targets and thus it is necessary to detect them
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Network Architecture

• Based on the PointNet [5] architecture with modifications to 
accommodate the data

• Uses class-balanced loss to counteract imbalances in data.
• Expanded input includes:

• Spherical coordinates
• Vehicle velocity and orientation

• Separate input transforms for cartesian and spherical coordinates
• Feed forward of the non-coordinate inputs to a later stage for higher 

output influence

Network mIoU IoU Ghost IoU Real F1 Ghost
Baseline (PointNet: 5 in feats.) 61,41% 55,91% 66,90% 71,72%
10 input features 65,13% 58,53% 71,73% 73,84%
10 features & skip connection 65,38% 58,63% 72,13% 73,92%
7 features & skip connection 64,52% 57,76% 71,29% 73,23%

• Setup with 10 input features. This network evaluates the importance of 
using additional input features

• Setup with 10 input and a skip connection. This is the network 
architecture presented and evaluates the usefulness of the skip 
connection

• Setup with 7 input and a skip connection. In this architecture we 
removed the spherical coordinates input to evaluate their impact on 
the overall result
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Ground Truth Generation
• There are not many public datasets for automotive radar, and existing 

datasets do not label ghost targets
• Manually labeling thousands of frames for ghost targets is very time 

consuming and error prone due to the complexity of driving scenarios
à We devise an approach to generate the required annotations to our 
unlabeled dataset
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