

SECI-GAN: Semantic and Edge Completion for dynamic objects removal

POLITECNICO MILANO 1863

Francesco Pinto, Andrea Romanoni, Matteo Matteucci, Philip Torr

Image Inpainting for Dynamic Object Removal

Image inpainting aims at **repairing a damaged image** predicting plausible contents for the missing parts.

Networks Architectures Details

ICPR

Inpainting steps GANs whose generator is made by a convolutional encoder and decoder, and whose discriminator is a SN-PatchGAN [3]

Output

Damaged Image

Inpainted Image

If the pixels from semantic segmentation maps of **dynamic object** are used for inpainting, it is possible to remove them.

SECI-GANEC [1]DeepFillv1 [2]DeepFillv2 [3]Previous methods struggle in this scenario,
especially in complex scenes.especially in complex scenes.Our method attains better performance.

to differently weight hallucinated information and the uncorrupted part of the input.

Contributions

A three-step pipeline: (1) performs semantic map inpainting, (2) inpaints edge data, (3) inpaints the image conditioning on the previous

Experimental results

SECI-GAN EC [1] DeepFillv1 [2] DeepFillv2 [3]

We evaluated our model with objective metrics on increasingly complex masks of arbitrary shape:

	M_{small}			M_{medium}				Mlarge				
	EC	Ours	DF2	DF1	EC	Ours	DF2	DF1	EC	Ours	DF2	DF1
PSNR↑	32.05	32.20	29.75	28.30	28.81	28.95	26.85	25.58	24.59	24.62	23.24	21.21
SSIM↑	96.97	97.09	94.51	92.47	93.83	94.00	89.51	86.63	88.95	88.89	83.23	78.80
FID↓	12.63	12.32	16.34	24.45	20.13	20.14	26.43	30.85	31.91	31.66	35.20	46.08

Conditioning on semantic maps suggests the coarse shape and the semantic class of objects. Conditioning on edge data suggests realistic low-level details.

LPIPS↓	3.60	3.58	5.40	7.70	6.85	6.68	9.24	11.66	11.12	11.37	13.67	16.87
--------	------	------	------	------	------	------	------	-------	-------	-------	-------	-------

We performed a user study to assess subjective quality of the inpainted images for the dynamic object removal task.

SECI-GANvsEC	>	<	=
Maj. Votes	53	7	0
Stat. Test	51	5	4
SECI-GANvsDFv1	>	<	=
Maj. Votes	60	0	0
Stat. Test	59	0	1
SECI-GANvsDFv2	>	<	=
Maj. Votes	60	0	0
Stat. Test	59	0	1

 [1] K. Nazeri et al. "Edgeconnect: Structure guided image inpainting using edge prediction," Proceedings of IEEE ICCV Workshops, 2019
[2] J. Yu et al. "Generative image inpainting with contextual attention," arXiv:1801.07892, 2018
[3] J. Yu et al. "Free-form image inpainting with gated convolution", IEEE ICCV 2019.