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Abstract

The contemporary SLAM mapping systems assume a static 
environment and build a map that is then used for mobile robot 
navigation disregarding the dynamic changes in this environment. 
The paper at hand presents a novel solution for the problem of life-
long mapping that continually updates a metric map represented as a 
2D occupancy grid in large scale indoor environments with movable 
objects such as people, robots, objects etc. suitable for industrial 
applications. We formalize each cell’s occupancy as a failure analysis 
problem and contribute temporal persistence modeling (TPM), an 
algorithm for probabilistic prediction of the time that a cell in an 
observed location is expected to be “occupied” or “empty” given 
sparse prior observations from a task specific mobile robot. Our work 
is evaluated in Gazebo simulation environment against the nominal 
occupancy of cells and the estimated obstacles persistence. We also 
show that robot navigation with life-long mapping demands less 
re-plans and leads to more efficient navigation in highly dynamic 
environments.

Contribution

One major challenge that robotic agents still face is that of long-term 
autonomous operation in dynamic environments, such as a factory 
floor. The robots have to deal with changing conditions where other 
robots, workers or moving objects such as pallets move around. To 
tackle this issue, various techniques have been used: multiple maps 
in various timescales can be retained [1, 2], the future state of the 
environment can be predicted by identified periodicities [3, 4].
 
In our work we employ temporal persistence modeling, otherwise 
used for predicting the location of previously detected objects [5], 
in order to predict the state of cells in the life-long map by gathering 
observations from the robot sensors. We implement the life-long 
observations as persistence probabilities which are integrated into 
a dedicated plugin for the ROS navigation environment. This is then 
used during robot global path planning. Our method enables robot 
navigation by avoiding congested areas reducing the required re-
plans, leading the robot to its target location without unnecessary 
maneuvering.

Assuming a cell c is observed as occupied at times t1, t2, t3 and t4, 
before it is observed as free at t5, as shown in Fig. 1, it is probable 
that c stopped being occupied at some time tf between t4 and t5. The 
change is assumed to have taken place somewhere in the middle of Δt. 
This leads to fitting a normal distribution over Δt, in order to randomly 
pick a time, needed for calculating μc. The mean of the distribution 
should be centered on the middle of Δt. Also, the estimated time of 
the occupancy change should lie in Δt, with a probability of 99.7%. 
The distribution should therefore have a value of N(Δt/2, Δt/3).
 
By utilizing the normal distribution, an estimated tf can be determined 
that will be later employed for the computation of μc, when a cell c is 
observed as free. In order to have a better representation, older values 
of μc  are taken into account:

where μc,i are older, similarly produced, mean times for that cell. More 
recent values of μc have larger weights than less recent ones.
 
Having calculated μc, it is possible to compute λ= 1/ μc for the 
exponential distribution. To find the probability for a cell c to have 
become free before or on time t, the cumulative distribution function 
is used:

Temporal Persistence Modeling

Temporal persistence is defined in this work as the time needed for 
the state of a map cell to change from “occupied” to “empty”. In that 
sense, temporal persistence modeling is an algorithm for probabilistic 
modeling the occupancy of a cell based on temporally sparse 
observations.
 
Given the current time tc and the last time tl, a cell c was observed as 
occupied, the aim is to calculate the probability P that c is still occupied. 
Exponential distributions can model the time elapsed between events, 
such as temporal persistence, using one rate parameter, λ and λ=1/μ, 
where μ is the expected value of the distribution. In the described 
model, μc is the average time between the last time a cell c was 
observed as occupied, and the time it became free again. Because 
each cell c cannot always be observed, μ is calculated in a probabilistic 
manner each time a cell c is observed as free.

So, the probability P that a cell c, last observed at time tl,  is occupied 
at current time tc is equal to 1 minus the probability c has become free 
before or on tc, that is given from the cumulative distribution function. 
P is then calculated as follows: 

Higher P indicates that a cell is more likely to be currently occupied. 
Having calculated the occupancy probability for one cell using 
temporal persistence modeling (TPM), the same procedure can be 
followed for each cell of the occupancy grid map of the environment 
and a new map can be created. This new map constitutes the life-long 
map in our work and can represent the expected occupancy of each 
cell at a given time, even when some areas are not directly observed 
by the sensor measurements of the mobile robot. The cells regarding 
the already known static obstacles can be filtered out of the expected 
map, thus leaving only the dynamic areas of the map that tend to 
change.

t1 t2 t3 t4 t5

OccupiedOccupied Occupied

Observed as 
occupied

Observed as 
occupied

Observed as 
occupied

Observed as 
free

Δt

Observed as 
occupied

Figure 1: Timeline for a cell c, observed at times t1, t2, t3, t4, t5

Navigation with life-long TPM maps 

A view of an instance of the simulated factory floor is shown in Fig. 
2a. In each of the distinct areas above the conveyor belt a model 
resembling a human is moving arbitrarily. The mobile robot is parked 
below the conveyor belt. In Fig. 2b the metric map of the same 
location the factory floor is shown; black cells on the grid represent 
the obstacles observed during the initial mapping process. In Fig. 
2c the life-long TPM map of the exact area. Brighter colors indicate 
higher probability of occupancy.
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Figure 2: (a) View from a location in factory floor model in Gazebo; 
(b) Metric map of the same location produced using conventional SLAM tech-
niques; (c) Occupancy probability for cells in the same location obtained from 

TPM

To incorporate the life-long TPM map into the navigation stack of ROS, 
an additional costmap layer is introduced, based on the occupancy 
probabilities of each cell derived from TPM. In case the occupancy 
probability of a cell is lower than 0.5, the cost for the respective 
cells is not updated. If the probability is close to 1, a costmap value 
that indicates that the robot would certainly be in collision, or in 
close proximity, is assigned. In the rest of the cases, a cost indicating 
that the robot could be in collision in those cells is assigned. This 
cost assignment enables the path planning module to confidently 
circumvent areas with high occupancy probabilities.
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Figure 3: (a) Heatmap of the mean occupancy of the map cells, derived by the 
known trajectories of the Gazebo models; (b) Heatmap of the predicted occu-

pancy of each map cell, after employing TPM

Experimental Assessment

In order to assess the effectiveness of the described method, a 
mobile robot was deployed in the simulated factory floor, where 
multiple worker models and a robot model were arbitrarily moving. 
The initial static map of the factory floor was created by a robot using 
conventional SLAM techniques.
 
One experiment was comparing the created heatmap with the expected 
occupancy probabilities to a heatmap of the mean occupancies of 
the whole factory floor. In Fig. 3 both heatmaps are shown. A cell by 
cell comparison between the two heatmap grids, after compensating 
for the thinned lines obtained by Gazebo, showed more than 95% 
accuracy of the prediction of temporal persistence.

Another experiment was conducted to assess how path planning 
improved with the proposed method. The global path planner used 
utilizes the A* algorithm for creating a plan considering the costmap. 
In Fig. 4a the metric map of the factory floor is shown with the global 
costmap layered on top of it, without the TPM layer. In Fig. 4b the 
costmap contains the costs associated with the high occupancy 
probabilities of persistent objects, calculated by the TPM plugin, 
resulting in planning around those areas.

The plans produced without the TPM plugin pass through congested 
areas where the predicted occupancy probability is high. This results 
in 3 times more replanning actions by the path planner, compared 
to the paths made when the TPM plugin was used. In these cases, 
the robot also passes in close proximity of the moving models, which 
can lead to collisions. On the other hand, paths planned taking the 
TPM costmap layer into consideration are longer and take longer to 
be completed. However, this can be mitigated by raising the speed of 
the robot through low occupancy probability areas.

Figure 4: Global costmap displayed over part of the metric map of the factory 
floor (a) without TPM plugin loaded, and (b) with TPM plugin loaded. A planned 

path to the same goal is shown in blue
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