

Deep learning in the ultrasound evaluation of neonatal respiratory status

Michela Gravina*, Diego Gragnaniello*, Luisa Verdoliva†, Giovanni Poggi*, Iuri Corsini§, Carlo Dani§, Fabio Meneghin¶, Gianluca Lista, Salvatore Aversall, Francesco Raimondi[‡], Fiorella Migliaro[‡] and Carlo Sansone^{*} *Dept. of Electrical Eng. and Information Technology, University of Naples Federico II, Naples, Italy - †Dept. of Industrial Engineering, University of Naples Federico II, Naples, Italy ‡Division of Neonatology, Section of Pediatrics, Dept. of Translational Medical Sciences, University of Naples Federico II, Naples, Italy SHospital Careggi of Florence, Italy - "Hospital "Vittore Buzzi", Milan, Italy - "Civil Hospital of Brescia, Italy"

1. Lung Ultrasound Advantages

- Lung Ultrasound (US) for neonatal respiratory status evaluation:
 - \checkmark Exhibits a high descriptive power
 - \checkmark Is able to analyze anatomical structures, like pleural line and artifacts, exploited by experts to asses the lung composition and status
 - ✓ Provides a visual assessment of the respiratory status of newborn patients
 - ✓ Reveals the need for respiratory support
 - \checkmark Is a harmless technique, compared to the standard X-rays (RX)
- US images are prone to many investigations through either visual inspection or computer-aided analysis
- The proposed work:
 - > Exploits Deep Learning (DL) approaches to define a score directly obtained from US images
 - \succ Test its correlation with pulse oximetric saturation ratio SpO₂/FiO₂ (SF)
 - > Analyzes the performance of recent state-of-art Convolutional Neural Networks (CNNs)

2. Methodology

Pre-Processing

- Images are resized to have the same horizontal resolution (N) and the first R rows are retained.

Respiratory Status Assessment

SF value prediction

• Train the CNN to directly predict the SR value with regression loss

Healthy

Transient Tachypnea of the Newborn (TTN)

Respiratory Distress Syndrome (RDS)

- The obtained rectangular-shaped (RxN):
- ✓ always includes the pleural line and part of the lung below it
- ✓ allows the network to process the whole US from left to right without discarding relevant regions
- ✓ does not include the bottom region of the US images, which carries no useful information

Healthy/Sick classification

- Train the CNN with class labels (i.e healthy or sick) that will be predicted with a certain confidence:
 - \succ The confidence can be regarded as class probability

Advanced Training Strategy

• **CNN architecture variation:** Replace the Global Average Pooling with a Vertical Average Pooling

- > Train the CNN with easy example
- Add hard or borderline samples in a second step

3. Experimental Setup

Performance evaluation

SF value prediction

- Mean absolute percentage of Error (MAPE)
- > Spearman's rank correlation between predicted SF and SF value

Healthy/Sick classification

- ➢ Accuracy (ACC)
- > Spearman's rank correlation between prediction probability and SF value

Involved CNN:

AlexNe

Dataset

et ¹	Dis

sease	Numb	ber of	Patients per center					
	patient	videos	Naples	Milan	Floren			

4. SF Value Prediction – Results

 $[-10^{\circ}, +10^{\circ}]$, random brightness and or contrast variation in the range [-25%, +25%]

Network	Input size	Augmentation	Correlation		MAPE			
			frame	video	session	frame	video	session
AlexNet	224×461	None	0.6678	0.6857	0.7371	0.1472	0.1430	0.1368
ResNet34	224×461	None	0.6291	0.6812	0.7398	0.1614	0.1465	0.1339
EfficientNet-B0	224×461	None	0.6383	0.6739	0.7357	0.1521	0.1399	0.1276
EfficientNet-B1	240×461	None	0.6735	0.7024	0.7487	0.1428	0.1345	0.1250
EfficientNet-B2	260×461	None	0.6754	0.7033	0.7630	0.1474	0.1402	0.1298
AlexNet	224×461	hor. flip	0.6587	0.6772	0.7263	0.1474	0.1454	0.1420
ResNet34	224×461	hor. flip	0.6504	0.6969	0.7556	0.1453	0.1414	0.1355
EfficientNet-B0	224×461	hor. flip	0.5857	0.6119	0.6653	0.1653	0.1609	0.1552
EfficientNet-B1	240×461	hor. flip	0.6645	0.6998	0.7637	0.1377	0.1338	0.1282
EfficientNet-B2	260×461	hor. flip	0.6620	0.6905	0.7576	0.1424	0.1389	0.1317
AlexNet	224×461	hor. flip, $\pm 10^{\circ}$ rot.	0.6644	0.6804	0.7328	0.1506	0.1492	0.1442
ResNet34	224×461	hor. flip, $\pm 10^{\circ}$ rot.	0.6621	0.6963	0.7662	0.1428	0.1389	0.1329
EfficientNet-B0	224×461	hor. flip, $\pm 10^{\circ}$ rot.	0.5994	0.6349	0.7070	0.1669	0.1620	0.1557
EfficientNet-B1	240×461	hor. flip, $\pm 10^{\circ}$ rot.	0.6642	0.6935	0.7534	0.1448	0.1419	0.1359
EfficientNet-B2	260×461	hor. flip, $\pm 10^{\circ}$ rot.	0.6661	0.6953	0.7592	0.1441	0.1408	0.1326
AlexNet	224×461	hor. flip, $\pm 10^{\circ}$ rot., bri./cont. adj	0.6695	0.6889	0.7442	0.1498	0.1481	0.1447
ResNet34	224×461	hor. flip, $\pm 10^{\circ}$ rot., bri./cont. adj	0.6649	0.6959	0.7623	0.1391	0.1349	0.1282
EfficientNet-B0	224×461	hor. flip, $\pm 10^{\circ}$ rot., bri./cont. adj	0.6067	0.6471	0.7176	0.1668	0.1619	0.1555
EfficientNet-B1	240×461	hor. flip, $\pm 10^{\circ}$ rot., bri./cont. adj	0.6563	0.6847	0.7416	0.1457	0.1429	0.1374
EfficientNet-B2	260×461	hor. flip, $\pm 10^{\circ}$ rot., bri./cont. adj	0.6638	0.6916	0.7577	0.1445	0.1415	0.1338

- ResNet34²
- EfficientNet-B0³
- EfficientNet-B1³
- EfficientNet-B2³

None	43	328	23	10	10	
RDS	30	727	11	8	11	
TTN	13	211	13	-	-	
Tot.	86	1266	47	18	21]
-						•

5.Healthy/Sick classification– Results

ASSIFICATION RESULTS OF THE CONSIDERED BASELINES WITH DIFFERENT AUGMENTA ANY AUGMENTATION AND BY ADDING THE FOLLOWING OPERATIONS, CONSECUTIVELY: RANDOM ROTATION IN THE RANGE $[-10^{\circ}, +10^{\circ}]$, RANDOM BRIGHTNESS AND OR CONTRAST VARIATION IN THE RANGE [-25%, +25%].

Network	Input size	Augmentation	Correlation			Accuracy		
			frame	video	session	frame	video	session
AlexNet	224×461	None	0.6586	0.6749	0.7518	0.8121	0.8245	0.8461
ResNet34	224×461	None	0.6507	0.6830	0.7562	0.8129	0.8229	0.8397
EfficientNet-B0	224×461	None	0.6536	0.6794	0.7463	0.8159	0.8316	0.8461
EfficientNet-B1	240×461	None	0.6647	0.6928	0.7578	0.8214	0.8332	0.8653
EfficientNet-B2	260×461	None	0.6471	0.6687	0.7353	0.8166	0.8340	0.8654
AlexNet	224×461	hor. flip	0.6593	0.6729	0.7458	0.8054	0.8166	0.8462
ResNet34	224×461	hor. flip	0.6414	0.6701	0.7526	0.8096	0.8182	0.8397
EfficientNet-B0	224×461	hor. flip	0.6425	0.6641	0.7351	0.8141	0.8190	0.8397
EfficientNet-B1	240×461	hor. flip	0.6461	0.6752	0.7533	0.8194	0.8356	0.8718
EfficientNet-B2	260×461	hor. flip	0.6390	0.6690	0.7431	0.8152	0.8237	0.8397
AlexNet	224×461	hor. flip, $\pm 10^{\circ}$ rot.	0.6485	0.6658	0.7363	0.8124	0.8229	0.8526
ResNet34	224×461	hor. flip, $\pm 10^{\circ}$ rot.	0.6602	0.6869	0.7546	0.8248	0.8387	0.8782
EfficientNet-B0	224×461	hor. flip, $\pm 10^{\circ}$ rot.	0.6696	0.6883	0.7543	0.8292	0.8364	0.8526
EfficientNet-B1	240×461	hor. flip, $\pm 10^{\circ}$ rot.	0.6539	0.6794	0.7540	0.8156	0.8356	0.8462
EfficientNet-B2	260×461	hor. flip, $\pm 10^{\circ}$ rot.	0.6378	0.6634	0.7264	0.8123	0.8245	0.8590
AlexNet	224×461	hor. flip, $\pm 10^{\circ}$ rot., bri./cont. adj	0.6557	0.6690	0.7310	0.8061	0.8206	0.8590
ResNet34	224×461	hor. flip, ±10° rot., bri./cont. adj	0.6777	0.7030	0.7782	0.8208	0.8387	0.8526
EfficientNet-B0	224×461	hor. flip, $\pm 10^{\circ}$ rot., bri./cont. adj	0.6581	0.6819	0.7586	0.8249	0.8379	0.8590
EfficientNet-B1	240×461	hor. flip, ±10° rot., bri./cont. adj	0.6592	0.6828	0.7564	0.8138	0.8340	0.8590
EfficientNet-B2	260×461	hor. flip, $\pm 10^{\circ}$ rot., bri./cont. adj	0.6620	0.6846	0.7501	0.8104	0.8316	0.8718

6. Advanced Training Strategies – Results

RESULTS OF THE BEST PERFORMING NETWORKS WITH CURRICULUM LEARNING AND HORIZONTAL POSITION INFORMATION PRESERVING

Train mode	Network	Advanced	Correlation MAPE or Acce					uracy
		training	frame	video	session	frame	video	session
Regression	ResNet34	hor. flip position	0.6734	0.6778	0.7440	0.1681	0.1427	0.1344
Regression	EfficientNet-B1	hor. flip position	0.6361	0.6754	0.7505	0.1511	0.1475	0.1395
	ResNet34	hor. flip position	0.6766	0.7051	0.7821	0.8179	0.8324	0.8718
Classification	EfficientNet-B1	hor. flip position	0.6459	0.6747	0.7608	0.8092	0.8261	0.8333
	ResNet34	Curriculum Learning	0.6780	0.6995	0.7604	0.8195	0.8348	0.8654
	EfficientNet-B1	Curriculum Learning	0.6645	0.6852	0.7600	0.8161	0.8616	0.8590

Correlation between LUS score⁴ assigned by humans expert and SF value: 0.8259

7. Conclusion

- Results show that ResNet34 trained for binary classification achieves the best performance in terms of correlation with the selected reference marker
- The correlation further improves by modifying the CNN architecture in order to take into account the horizontal position of the extracted convolutional networks
- It is worth observing that the proposed approach performs comparably with the human operator (+4.4%)

9. References

8. Future works

Enlarge the dataset including data from other medical centers Improve the training strategy by exploiting the temporal information of the lung US videos

¹A. Krizhevsky et al, "Imagenet classification with deep convolutional neural networks" ²K. He et al. "Deep residual learning for image recognition"

³M. Tan et al. "Efficientnet: Rethinking model scaling for convolutional neural networks

⁴F. Raimondi et al. "Visual assessment versus computer-assisted gray scale analysis in the ultrasound evaluation of

neonatal respiratory status," PLOS ONE