BAYESIAN ACTIVE LEARNING FOR MAXIMAL
INFORMATION GAIN ON MODEL PARAMETERS

Acknowledgment: This work was supported by the Novo Nordisk Foundation grant NNF170C0028360.

Kasra Arnavaz, Aasa Feragen, Oswin Krause, Marco Loog

kasra@di.ku.dk, afhar@dtu.dk, oswin.krause@di.ku.dk, m.loog@tudelft.nl

Active learning investigates whether with few-
er samples we could reach at least the same
performance as random sampling if we had

the control over which samples to gather.
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Photo credit: “Bayesian interpolation”, MacKay 1992

We assume we have already decided on one par-
ticular model we want to be using.

We would then aim to gather data which gives us
maximal expected information on the parameters
of that particular model.

Bayesian Inference

Suppose we have observed N input-target pairs as

D={x,t} ,where x, e Rz, €{0,1}and n=1,..,N.

We limit our attention to a logistic regression mod-
el with parameters w e R* defined by

j— 1 .
1+exp(-w'x,)

If we assume a zero-mean Gaussian prior with vari-

»(x,,w)

ance 1/a over parameters, our posterior dis-
tribution can be written as

POw| D,) =7 exp(-M (),
where
M(w)= Ztn log y(x,;w)+(1—t,)log(l— y(x,;w))+ %awTw.

We approximate our posterior distribution
over parameters as a Gaussian with mean

wyap =argmin M (w) and covariance 47 where
A= 9(x, a1 = (3, Wy ), X+

Bayeslan Active Learning

If we select change in entropy (S, —S,,,)as the
measure for information gain, our objective is to
select Xx,, that gives maximal expected infor-
mation gain, i.e.

Xy = arg n;aX(EP(t\x,D)[SN —Syul-

Entropy of a k-dimensional Gaussian distribution
with covariance matrix 4! is

S = %(l +log2m) + %log(det A™.

Therefore, the change in entropy would equal to

AS = llog(l +m),
where 2

m =YXy ;s Wyap) 1 = V(X115 Wypap )]X;HA;/IXNH-

information gain

decision boundary

The contour colors indicate the value (pink=high, blue=low) of the property being maximized,
i.e. the information gain (top) and the distance to decision boundary (bottom). The black
points indicate unlabeled samples and white points indicate labeled samples. We show the
progression after 2, 12, and 22 labeled samples.




Experiments

We compare the derived ‘information gain’ strategy for data gathering on roughly linearly separable
data sets (top 5 rows) as well as non-linearly separable data sets (bottom 5 rows).
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