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Background

Recurrent neural networks (RNNs) have been widely used in learning complex
patterns for sequential input data. However, gradient explosion/decay is identi-
fied as one of the key reasons that prevent RNNs from being trained efficiently
and effectively. The issue is mainly caused by:
P1. The number of time steps is large where long-term dependencies exist

among the data;
P2. The state transmission function involves multiple hidden states such as in

deep RNNs;
P3. The data samples are very noisy or the true signal is weak.

Contributions

◦ We propose a novel yet simple RNN optimizer based on the
Frank-Wolfe method;
◦ We theoretically analyze the convergence of our algorithm and its
benefits in RNN training;
◦ We empirically conduct comprehensive experiments to demonstrate
the effectiveness and efficiency of our algorithm in various settings
that cover all the scenarios of P1, P2, P3.

Frank-Wolfe RNN Optimizer

At a high-level, we propose to estimate the stable (ap-
proximate) gradients in RNNs. In Fig. 1, u denotes
the current realization for function F (ω) whose gradi-
ent is ∇F (u). ∆u denotes the desired output vector
that points towards the local minimum from u, and
δ ≥ 0 denotes the radius of the search region in the
parameter space centered at u (denoted by the dotted
circle). Obviously, ∇F (u) and ∆u could be quite dif-
ferent, and our goal is to learn ∆u, by looking around
in a sufficiently small neighborhood.
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Fig. 1: Proposed method.

Algorithm 1 Frank-Wolfe RNN Optimizer
Input : objective f , norm p, local radius δt,∀t, max numbers of iterations

K,T
Output: RNN weights ω
Randomly initialize ω0;
for t = 1, · · · , T do

∆ωt,0 ← 0;
for k = 1, · · · , K do
st,k ← arg mins∈C(p,δt)〈s,∇∆ωF (ωt−1 + ∆ωt,k−1)〉;
∆ωt,k ← (1− 1

k)∆ωt,k−1 + 1
kst,k;

end
ωt← ωt−1 + η∆ωt,K;

end
return ωT ;

Experiment Results

Fig. 2 illustrates the loss change of our
algorithm compared with SGD on adding
task when the time sequence is long. Our
algorithm converges after a reasonable
number of iterations while SGD lost the
learning ability in this task. We hypoth-
esize that at the beginning all the algo-
rithms search for a good direction within
a certain region. Given sufficient updates
later, our algorithm starts to move to-
wards informative directions, leading to
significantly fast convergence.
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Fig. 2: Training loss of Adding Task.
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Fig. 3: Training loss and test accuracy on Pixel-MNIST and Permute-MNIST.
Fig. 3 shows the change of training cross-entropy and test accuracy of RNN
with the epoch for Pixel-MNIST and Permute-MNIST. Without extra opti-
mization techniques, SGD shows no convergence or very slow convergence.
We observe that TBPTT does help the convergence for the Permute-MNIST,
however, the performance of TBPTT is only slightly better than the baseline
SGD in the Pixel-MNIST case with sporadically increases and decreases of
loss. As a contrast, our algorithm shows a faster convergence rate and a much
more stable performance on both datasets. When TBPTT is combined with
our algorithm, the model achieves faster convergence and higher test accuracy
than the baseline for Pixel-MNIST. As for Permute-MNIST, the combination
method eventually reaches higher test accuracy with more training epochs. It
is worth mentioning that when the inner iterationK increases in our algorithm,
the total number of gradient updates needed for convergence decreases.
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Fig. 4: Training loss on Pixel-MNIST and Permute-MNIST with indRNN.

Table 1: Test accuracy (%) (training hours) of IndRNN.

Dataset Acc. (Time)
Baseline Ours K=1 Ours K=5

Pixel-MNIST 98.88 (4.84) 98.73 (3.46) 98.82 (2.55)
Permute-MNIST 93.00 (4.92) 92.87 (3.68) 92.59 (2.41)
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Fig. 5: Training loss of RNN on HAR-2 and Noisy-HAR-2.

Table 2: Test accuracy (%) and training time (hr) of RNN.
Method HAR-2 Time Noisy-HAR-2 Time
SGD 87.66 0.17 74.38 0.17
SGD+Clipping 93.36 0.13 74.38 0.13
TBPTT 93.62 0.38 86.20 0.56
LSTM+Adam 94.40 0.14 92.12 0.17
Ours K=1 93.52 0.15 86.04 0.14
Ours K=5 94.11 0.14 89.36 0.14
Ours K=10 93.65 0.37 89.52 0.35
Ours+BN 94.37 0.36 89.38 0.41
TBPTT+Ours 94.01 0.35 89.28 0.84
LSTM+Ours 94.95 0.19 92.41 0.42
IndRNN 95.73 0.46 91.20 0.45
IndRNN+Ours 96.55 0.13 92.15 0.17

Outlook
This work motivates the RNN training on a distributed system. In future
work, we will investigate the application of our algorithm in a distributed
setting which can reach significant speed-ups at no or nearly no loss of
accuracy.
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