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Baseline Architecture

Dataset : IAM Lines [8]
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Problem : Line Level Handwritten Text Recognition
Sequence of 

Visual Features

Sequence of 

Characters drawn from 

an alphabet

So far HTR has been handled as : Single Task

In this paper we handle the HTR as : Multitask

Goals :

• Enable language domain knowledge integration via Multitask Scheme

• Explore fine-to-coarse n-gram granulatities 

• Explore Multitask Architectures 

• Perform unigram level decoding in the inference. No computational burden in the 
decoding process

We formulate the Multitask Scheme as a way to integrate language domain knowledge. In HTR, the

domain knowledge was integraded so far in the postprocessing step, the decoding via Statistical Language

Models, either character level or word level. In our case, we integrate implicitly into the training procedure the

n-gram character level information, since we "force" the model to learn except from unigrams, n-grams. As a

result we obtain the visual n-gram probability.

Evaluation Metrics : Word Error Rate, Character Error Rate

Multitask CTC Loss : Composed of unigram, bigram and

Trigram CTC losses. 

B : Mapping that removes the repeating concecutive characters and 

Then the "blank" characters. Converts an alignment to sentence. 

• There is no substantial difference in recognition performance between the Hierarchical and Block

Architecture. Thus we focus on the BLock Mutitask architecture with Unigram and Bigram CTC levels

• Comparing our Single-task architecture with the Block Multiatsk we observe the improvement in both

WER and CER in the greedy decoding where no explicit language knowledge was utilized. This result

indicates that the using unigrams and bigrams (character level) in a multitask-scheme improves the

internal learned representations and leads to better performance metrics

Each n-gram builds its 

task specific layer upon 

previous n-gram layers

All n-gram task-specific 

layers share the same 

encoder
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CTC Objective :

Y : groundtruth text

A: set of all possible alignments of Y 

P(Y|X) = Σ P(a| X)

Intuition : Sum up the probability to have the

all possible alignments.

Consider them all when Maximimizing

Example of a single alignmemt for word "better". In the

case where a subset of all possible trigrams is selected as

target units, the missing trigram in every word is

substitued with the blank character "-" . The same applies

to bigrams.

• In all the above experiments we utilize only the unigram posteriors in the inference so as to keep the 

computational cost of decoding as low as possible

Dynamic Data Augmentation 


