Navdeep Dahiya, ${ }^{1}$ Yifei Fan, ${ }^{1}$ Samuel Bignardi, ${ }^{1}$ Romeil Sandhu, ${ }^{2}$ and Anthony Yezzi ${ }^{1}$

${ }^{1}$ School of Electrical and Computer Engineering, Georgia Institute of Technology; ${ }^{2}$ Computer Science Department, Stony Brook University

ABSTRACT

We introduce a new method of leveraging PCA between paired datasets in a dependently coupled manner, which is optimal with respect to approximation error during training.

- PLSR/CCA [1,2] maximize cov/corr b/w paired data, symmetrically without differentiating b / w observable and unobservable data.
- DC-PCA generates dependently coupled paired basis by relaxing orthogonality constraints in decomposing unobservable component.
- DC-PCA better suited for inversion problems.

OBJECTIVES

- In typical inversion problems, full inversion of variable X with limited observability is impractical.
- Obtain estimate of X based on low dimensional inversion for variable X.
- Obtain a low dimensional estimate of hidden/unobservable variable (Y) based on the low dimensional inversion of the coupled variable (X).

PROPOSED DC-PCA

MxN matrix $X=\left[\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{2} & \cdots & \mathrm{x}_{N}\end{array}\right]$ with N data measurements, and KxN matrix $\mathrm{Y}=\left[\mathrm{y}_{1} \mathrm{y}_{2} \cdots \mathrm{y}_{N}\right]$ with N individually paired measurements.

Standard PCA on X minimizes
MSE: $\varepsilon_{X}(A, U)=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-U \boldsymbol{a}_{n}\right\|^{2}$ where U is an orthonormal basis, and a_{n} are expansion coefficients for closest approximations to measurements x_{n} in this basis U.

If we impose basis U together with optimal coefficients, then we may seek paired basis V (not necessarily orthogonal), that minimizes MSE:

$$
\varepsilon_{Y}(A, V)=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{y}_{n}-V \boldsymbol{a}_{n}^{*}\right\|^{2}
$$

Using $\boldsymbol{a}_{n}^{*}(\mathrm{U})=U^{T} \mathrm{x}_{n}$ above, taking derivative wrt V and setting to zero yields:
$V=Y X^{T} U \Lambda_{X}$ where Λ_{X} is diagonal matrix of largest eigenvalues of $X X^{T}$

Given expansion coefficients which estimate observable X, we may obtain optimal prediction for unobservable Y, using same set of coefficients and the paired basis V.

- X represents 2D cross-section shape and Y a paired 3D teacup shape.
- Low dimensional shape inversion is applied to ideal noiseless silhouette using both PCA and PLSR basis for X.
- Both methods extract similar shape from raw image data (left).
- However, the estimated 3D surface (Y estimate) from PLSR exhibits higher mismatch against true shape compared to DC-PCA (right).
- This is because the X estimate that would have produced superior PLSR Y estimate is not captured during inversion process.

PRACTICAL APPLICATION

- Segment Left Ventricle (LV), Right Ventricle (RV), and Epicardium (EPI) from cardiac CT imagery using 3D shape models built from manual training segmentations [3].
- LV much easier to segment than RV \& EPI (Treat LV as observable X and RV/EPI as coupled unobservables Y).
- Estimate RV (yellow) \& EPI (red) using DC-PCA based on fitted LV (blue) shape coefficients.
- DC-PCA does better in estimating unobservable anatomies (less overshoot in RV compared to PLSR/CCA/Joint PCA).

REFERENCES

[1] J. A. Wegelin et al., "A survey of partial least squares (pls) methods, with emphasis on the two-block case," University of Washington, Tech. Rep, 2000.
[2] H.HOTELLING,"Relations between two sets of variates." Biometrika, vol. 28, no. 3/4, pp. 321-377, 1936.
[3] N. Dahiya, A. Yezzi, M. Piccinelli, and E. Garcia
"Integrated 3D anatomical model for automatic segmentation in cardiact CT imagery," Computer Methods in Biomechanics \& Biomedical Imagery. 2019.

