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Introduction
Datasets: MNIST, CIFAR-10, SVHN, 3D Chairs, CelebA .

Method

Our study shows the global stabllity of a PCN Is determined by
stability of the local layers and the feedback between neighboring
layers. Based on it, we further propose Weight Norm Supervision
method to control the stability of PCN dynamics by imposing
different weight norm constraints on different parts of the network.

Motivation: Predictive Coding Network (PCN) Is a recurrent
neural network inspired from neuroscience. However, training
a PCN In finite-time with backpropagation through time (BPTT)
can only approximate how a real PCN works. To further
explore its potential, it IS necessary to study its dynamics in
Infinite-time evolution. Moreover, the number of recurrent cells
needed In PCN Is big, and this long-term dependency could
lead to vanishing and exploding gradient problems in BPTT
training.

Theories

1. A sufficient condition for stable hierarchical RNNSs.

Experiments & Results

Compared methods: weight norm supervision, no norm constraint,
batch normalization, weight decay.

1. Metrics: State asymptotic.
Results: our weight norm supervision method achieved the
best performance on stability. Please see the results on all the

Lemma 1. Let a hierarchical RNN consist of a stack of layers . .
datasets in appendix.

and be linearizd around some point, where at time step { + 1.
each layer receives input from the output of lower layers at step
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2. Metrics: mean squared prediction errors in test set.

Results: weight norm supervision has the smallest prediction
errors over 5 datasets, except that on CIFAR-10, weight decay
performs a little better.

2. A sufficient condition for stable PCNs.

Theorem 2. Consider a PCN whose dynamics are defined
in Section III-A. Its stability of dynamics 1s studied by
investigating the approximation of the local linearized dynamic
system 1n Eq. 6. Then, a sufficient condition for the stability of

TABLE I: Mean Squared Prediction Errors in Test Set After 8 Cycles

Weight Norm Supervision  No Norm Constraints  Batch Normalization  Weight Decay

PCN dynamics around the linearizing point 1s given by Eq. 7, MNIST 0.04268 0.14898 0.165877 0.068254
where CIFAR-10 0.003129 0.023687 0.036623 0.000522
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Weight Norm Supervision No Norm Constraints  Batch Normalization  Weight Decay
¢ 1s the activation of representation, while ¢ 1s the activation MNIST 0.04293 0.128875 0120328 0.068254
f orediction. @' : 4" are diagon: atrices yse diaoon: CIFAR-10 0.002946 0.109168 0.03507 0.000549
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CelebA 0.000402 0.001173 0.106447 0.275487

layer.




