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Smart Speakers Spectral Experiments and Results

= |n order to differentiate based on noise, network and channel differences, we used

: : : , , , , = Performance was assessed usin | I l , _ _
" Enabled  with  voice  assistant the following from the librosa library [2]: Spectral flatness, rolloff, centroid, £ ool idati th 8§ +0 m——
technology — Amazon Alexa, Google bandwidth lve-tola cross validation with &0- |
: = ' , _ , 20 train-test split with 10s samples 0.8 :
Assistant, Sir), etc. | =  We developed a harmonic mean Fast Fourier Transform (FFT) measure which with no overlapp n speakers P
" YoY r|§e in use of these devices. computes a harmonic mean across time for each frequency bin of the short-time s Compared with baseline of .CaII § 0.6 i
" Substitute smart phones for some Fourier transform (STFT) outputs: P 3
tasks. E.g. playing music, videos, T provenance features [3] and MFCC §04 _
making calls. fre = ST 1 features. A
t=1 S(k,t) o BeSt performance frOm Vd rIOUS 0.2 ,. — Proposed feature set |
. . . classifiers was used. | - - Call provenance features
Why is detection ImMpo rtant? where S(k,t) is the spectrogram across frequency f and time t and T is the number -~ MFCC features
Smart speaker devices make Voice over Internet Protocol (VolP) calls to the Public of time frames. EER: °%.0 0.2 0.2 0.6 0.8 1.0
Switched Telephone Network (PSTN) retaining the user’s cell or landline number. ' . alse positive rate
ROC curves for LPC residual features PrOpOSEdI 126/’

ROC curves for spectral features 10

10

- = =
-

Call provenance: 17.6%
: MFCC: 23.8%

' oy

= (Call centers use technology that make decisions on the audio and metadata of calls.
= Speaker identification systems for device based calibration. 08
= Audio forensics.

= (Call-based device type identification applications.

Proposed system shows 28% improvement in EER over call
provenance and 47% over MFCC features.
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= Performance for smart
speakers is best when used
from far away, >100 cm.
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- Individual features are discriminative.
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= (Calls from smart speakers are different from those of cell phones due to various factors: narmanic > 119138 onciusions

number of microphones, microphone array configuration, type of beamforming and
denoising algorithms. Approach to differentiate smart speaker calls from cell phone calls.

= |n the above figure we observe a loss in harmonic structure, sharpness of onsets and Proposed audio feature set to detect differences in reverberation, noise
channel differences. and spectral characteristics.

A dataset was collected through crowdsourcing with participants using

both devices in different modes.

Proposed system differs from previous works as it detects smart speaker
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= Actual phone calls collected through crowdsourcing with natural speech.
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