Learn to Segment Retinal Lesions and Beyond
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Abstract Lesion-Net for Lesion Segmentation
This paper focus on simultaneously pixel- e Natural object segmentation: objects with precise boundaries = cutting-edge contracting path + carefully designed expansive path
level retinal lesion segmentation and 1image- e Retinal lesion segmentation: lesions have no objective boundaries = learn to segment with imprecise boundaries
level disease classification. Following -Lesion-N et: adjustable expansive path + dual loss | e Longer expansive path: more
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FiP e Dual loss: loss,;,,, = A - lOSSseg +(1-4)- ZOSSclf expansive path= Lesion-Net-16s
Three challenges: A € [0,1]: hyper parameter to strike a balance between the two sub-losses
1. Lesions lacking objective boundaries; loss,,, and loss, . : lesion segmentation loss and lesion classification loss. loss,- can indicate mis-classification of small lesions.

Image-level lesion classification are generated by global max pooling on the segmentation results.

Multi-task Network Experiments
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Three tasks in one model: Dataset: 12,252 images from local hospitals and EyePACS dataset. Each image 1s annotated
1. lesion segmentation with image-level DR grade and pixel-level lesions. EyePACS part ot the test set has been

2. Clinical importance of lesions are 7 lesion classification released on https://github.com/WeiQijie/retinal-lesions

irrelevant to their size;

3. DR gradin Results
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L ‘ L ‘ Segmentation examples
\> Gonvolutionsof neepton 3+ Downsamping of ncepton V3 e Testimages Ground-truth FCN-8s U-Net Deeplabv3+ DANet Lesion-Net-16s Lesion-Net-2s
Our SOluthllS, aCCOl'dlngly: ~ Two 3x3 convolutional layers > Upsampling (1x1 convolution + bilinear interpolation
1. Lesion-Net with adjustable expansive Main branch (top, Inception-v3): feature
path; extraction

2. Dual loss that combine segmentation loss
and classification loss;

3. Multi-task network that harnesses lesions
to improve disease classification.

Side-attention branch (down, Lesion-Net-16s):
injecting semantic and spatial information
contained in the 8 lesion segmentation maps 1nto
the main branch.




