Learn to Segment Retinal Lesions and Beyond

Qijie Wei1,2, Xirong Li2, Weihong Yu1, Xiaozhang Zhang1, Yongpeng Zhang4, Bojie Hu5, Bin Mo6, Di Gong6, Ning Chen7, Dayong Ding2, Youxin Chen3

1Renmin University of China 2Visionary Intelligence Ltd 3Peking Union Medical College Hospital 4Beijing Tongren Hospital 5Tianjin Medical University Eye Hospital 6China-Japanese Friendship Hospital 7The Affiliated Yantai Yuhuangding Hospital of Qingdao University

Abstract

This paper focuses on simultaneously pixel-level retinal lesion segmentation and image-level disease classification. Following discussions are in the context of:

1. **Five grades diabetic retinopathy (DR) classification**
 - no DR, mild NPDR, moderate NPDR, severe NPDR, PDR

2. **Eight DR-related lesions segmentation**
 - MA, iHE, HaEx, CWS, vHE, pHE, NV, FiP

Three challenges:

1. Lesions lacking objective boundaries;
2. Clinical importance of lesions are irrelevant to their size;
3. Lesions and disease classes have no one-to-one correspondence.

Our solutions, accordingly:

1. Lesion-Net with adjustable expansive path;
2. Dual loss that combine segmentation loss and classification loss;
3. Multi-task network that harnesses lesions to improve disease classification.

Lesion-Net for Lesion Segmentation

- **Natural object segmentation**: objects with precise boundaries ⇒ cutting-edge contracting path + carefully designed expansive path
- **Retinal lesion segmentation**: lesions have no objective boundaries ⇒ learn to segment with imprecise boundaries
- **Lesion-Net**: adjustable expansive path + dual loss

Dual loss: $\text{loss}_\text{dual} = \lambda \cdot \text{loss}_\text{seg} + (1 - \lambda) \cdot \text{loss}_\text{clf}$

$\lambda \in [0,1]$: hyper parameter to strike a balance between the two sub-losses loss_seg and loss_clf; lesion segmentation loss and lesion classification loss. loss_clf can indicate mis-classification of small lesions.

Image-level lesion classification are generated by global max pooling on the segmentation results.

Multi-task Network

Three tasks in one model:

1. lesion segmentation
2. lesion classification
3. DR grading

Main branch (top, Inception-v3): feature extraction

Side-attention branch (down, Lesion-Net-16s): injecting semantic and spatial information contained in the 8 lesion segmentation maps into the main branch.

Experiments

Dataset: 12,252 images from local hospitals and EyePACS dataset. Each image is annotated with image-level DR grade and pixel-level lesions. EyePACS part of the test set has been released on https://github.com/WeiQijie/retinal-lesions

Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Lesion segmentation</th>
<th>Lesion classification</th>
<th>DR grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCN-8s</td>
<td>0.586</td>
<td>0.778</td>
<td>-</td>
</tr>
<tr>
<td>U-Net</td>
<td>0.570</td>
<td>0.757</td>
<td>-</td>
</tr>
<tr>
<td>DeepLabv3+</td>
<td>0.553</td>
<td>0.794</td>
<td>-</td>
</tr>
<tr>
<td>DANet</td>
<td>0.585</td>
<td>0.775</td>
<td>-</td>
</tr>
<tr>
<td>Inception-v3</td>
<td>-</td>
<td>-</td>
<td>0.774</td>
</tr>
<tr>
<td>ABN</td>
<td>-</td>
<td>-</td>
<td>0.797</td>
</tr>
<tr>
<td>Multi-task network</td>
<td>0.591</td>
<td>0.801</td>
<td>0.803</td>
</tr>
</tbody>
</table>

Take-home message

1. Lesion-Net is effective for segmenting retinal lesions with imprecise boundaries;
2. Multi-task network can simultaneously achieve three tasks;
3. Multi-task network gets better performance in all three tasks.

Segmentation examples