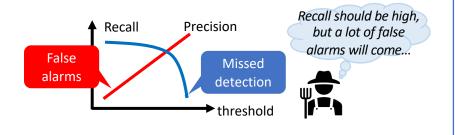
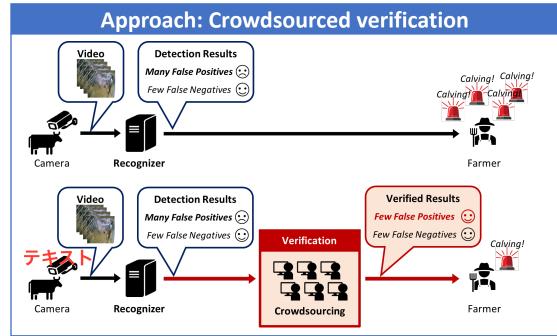
Crowdsourced Verification for Operating Calving Surveillance Systems at an Early Stage


Yusuke Okimoto*, Soshi Kawata*, Susumu Saito*†, Teppei Nakano*†, Tetsuji Ogawa* *Department of Communication and Computer Engineering, Waseda University †Intelligent Framework Lab


Problem

Objective: Reliable operation of pattern-recognition-based video surveillance systems at an early stage

Problems

- No pre-trained models and large-scale data available in many real applications (e.g., calving detection from video)
- Many errors with low resource training

Experiment

Objective: To investigate whether crowdsourced verification can reduce false alarms without increasing missed detection.

Task: Detecting allantochorion and fetal membrane of cow

Data: Cattle region images extracted with YOLOv2 and YOLOv3

	Positive (images)	Negative (images)
Training	9.877	9,877
Testing	324	4,138

Result: Crowdsourced verification helped a lot in reducing false alarms.

Simply raising thresho	recall	precision	CSV	Th
6 Precision recall	0.86	0.52		0.5
Crowdsourced verifica	0.71	0.83		0.9
	0.83	0.89	✓	0.5

- Images are verified by a majority vote of four crowdworkers.
- If even one image is verified as positive in 5 minutes (180 images), alarm is sent.

rced verification