Toward Building a Data-Driven System For Detecting Mounting Actions of Black Beef Cattle

<u>Yuriko Kawano¹</u>, Susumu Saito^{1,2}, Teppei Nakano^{1,2}, Ikuno Kondo³, Ryota Yamazaki³, Hiromi Kusaka³, Minoru Sakaguchi³, Tetsuji Ogawa¹

¹ Waseda University, ² Intelligent Framework Lab, ³ Kitasato University

Summary

Motivation:

To build a pattern recognition-based system that detects cattle's mounting actions using video .

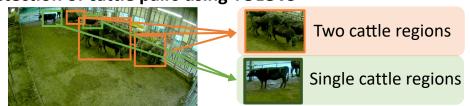
Approach:

- 1. Constructing a mounting action image dataset using crowdsourcing
- 2. Building a tandem-layered mounting action detector with small training data

Background

Cattle Estrus Signs:

The best indicator of estrus is when a cow mounts another cow or stands to be mounted, called "mounting actions".



Challenges of Patter Recognition-based Approach:

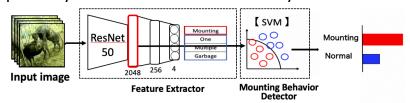
- 1. There is no published dataset containing two cattle interactions.
 - 2. Large-scale dataset collection for End-to-End system is challenging because mounting actions do not occur frequently.

Image Dataset Construction (details in supplements)

Detection of cattle pairs using YOLOv3

Annotation using crowdsourcing

► Images were divided into 6 classes


- ·MT
- · Complete One (CO)
- · Incomplete One (IO)
- Complete Multiple (CM)
- Incomplete Multiple (IM)
- Garbage (GR)

Mounting Annotation Image Dataset

Labels	Mounting	One		Multiple		Garbage
		СО	10	CM	IM	
# of images	760	1,221	669	914	1,322	134

Mounting Action Detection Experiment

Proposed system is built on "tandem"-layered architecture.

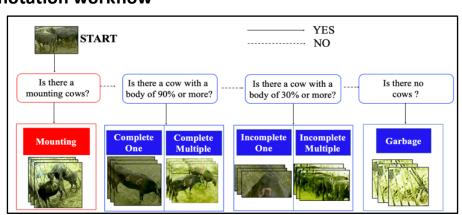
Experiment (details in supplements)

- **Dataset** Constructed mounting action image dataset including 29 mounting actions
 - Dataset was divided into 5 subsets to perform five-fold cross validation.
- **Systems** E2E [baseline] an End-to-End system for both feature extraction and mounting action detection
 - Tandem [proposed]

Results Outperformed the E2E system on small training data

Mo	del	Precision	Recall	<u>F-value</u>
E2	2E	0.36	0.13	0.19
Tand	dem	0.80	0.76	0.78

Toward Building a Data-Driven System For Detecting Mounting Actions of Black Beef Cattle Supplement


<u>Yuriko Kawano¹</u>, Susumu Saito¹,², Teppei Nakano¹,², Ikuno Kondo³, Ryota Yamazaki³, Hiromi Kusaka³, Minoru Sakaguchi³, Tetsuji Ogawa¹ ¹ Waseda University, ² Intelligent Framework Lab, ³ Kitasato University

Annotation Using Crowdsourcing

Problem with annotating cattle images

- 1. The number of images that contain mounting actions (positive examples) are much fewer than that of images without them (negative examples)
- Subdividing the negative examples based on the number of cows
- 2. It is difficult to determine the number of cows in diverse images.
- Classifying the negative examples according to the portion of the visible cow's cow's body
- 3. There are some spammers and careless workers.
- Testing whether workers understand mounting actions before actual annotation tasks

Annotation workflow

- Workers were required to give labels to 20 different images in a row before receiving a reward of 80 cents..
- · crowdsourcing platform: Amazon Mechanical Turk (AMT)

Qualification test

Objective: To eliminate spammers and careless crowd workers Test images: 3 images from positive class and 4 images from each negative class

Passing criteria: Workers who answered correctly **5 or more**Results: ✓ qualification tests were effective in selecting workers who understand mounting actions

All workers : 111 workers Workers who

All workers : 111 workers			Workers who passed: 51workers (46%)			
precision	recall	F-value	precision	recall	F-value	
0.93	0.72	0.81	1.00	0.97	0.98	

Main task

- · Labels were annotated by 4 workers per image
- Final label was determined by a weighted majority on the estimated worker's ability.

Mounting Annotation Image Dataset

	0 -					
Labels	Mounting	One		Multiple		Garbage
		СО	10	CM	IM	
# of images	760	1,221	669	914	1,322	134

Toward Building a Data-Driven System For Detecting Mounting Actions of Black Beef Cattle Supplement

<u>Yuriko Kawano¹</u>, Susumu Saito^{1,2}, Teppei Nakano^{1,2}, Ikuno Kondo³, Ryota Yamazaki³, Hiromi Kusaka³, Minoru Sakaguchi³, Tetsuji Ogawa¹

¹ Waseda University, ² Intelligent Framework Lab, ³ Kitasato University

Mounting Action Image Dataset

Mounting (MT)

Complete One (CO)

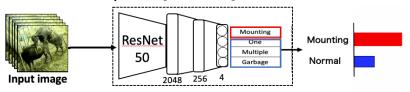
Incomplete One (IO)

Complete Multiple(CM)

Incomplete Multiple(IM)

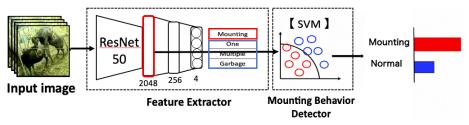
Garbage (GR)

Toward Building a Data-Driven System For Detecting Mounting Actions of Black Beef Cattle Supplement


<u>Yuriko Kawano¹</u>, Susumu Saito^{1,2}, Teppei Nakano^{1,2}, Ikuno Kondo³, Ryota Yamazaki³, Hiromi Kusaka³, Minoru Sakaguchi³, Tetsuji Ogawa¹

¹ Waseda University, ² Intelligent Framework Lab, ³ Kitasato University

Mounting Action Detection Experiment


Systems to compare

End-to-End System [baseline]

Mounting Behavior Detector

Tandem-layered System

Input image · cattle regions detected by YOLOv3

- resized to 224 \times 224
- · color tone correction using gamma correction

Dataset

A constructed image dataset included 20 mounting actions was divided into 5 to perform 5-fold cross validation

idx	Mounting	One	Multiple	Garbage
1	164	452	430	56
2	161	334	397	20
3	182	382	394	14
4	141	389	571	39
5	141	327	422	4
Total	789	1884	2214	133

Results ✓ Outperformed the E2E system on small training data

Model	Precision	Recall	F-value
E2E	0.36	0.13	0.19
Tandem	0.80	0.76	0.78

Qualitive results with the positive-class label (MT)

- > True-Positive Detection Results
- ✓ Mounting actions were detected correctly when images included a mounting cow obviously.

- > False-Negative Detection Results
- Mounting actions seemed difficult to be detected when images included only a part of a mounting cow or they were blurry.

