### **ICPR 2020**

# Responsive Social Smile: A Machine Learning based Multimodal Behavior Assessment Framework towards Early Stage Autism Screening

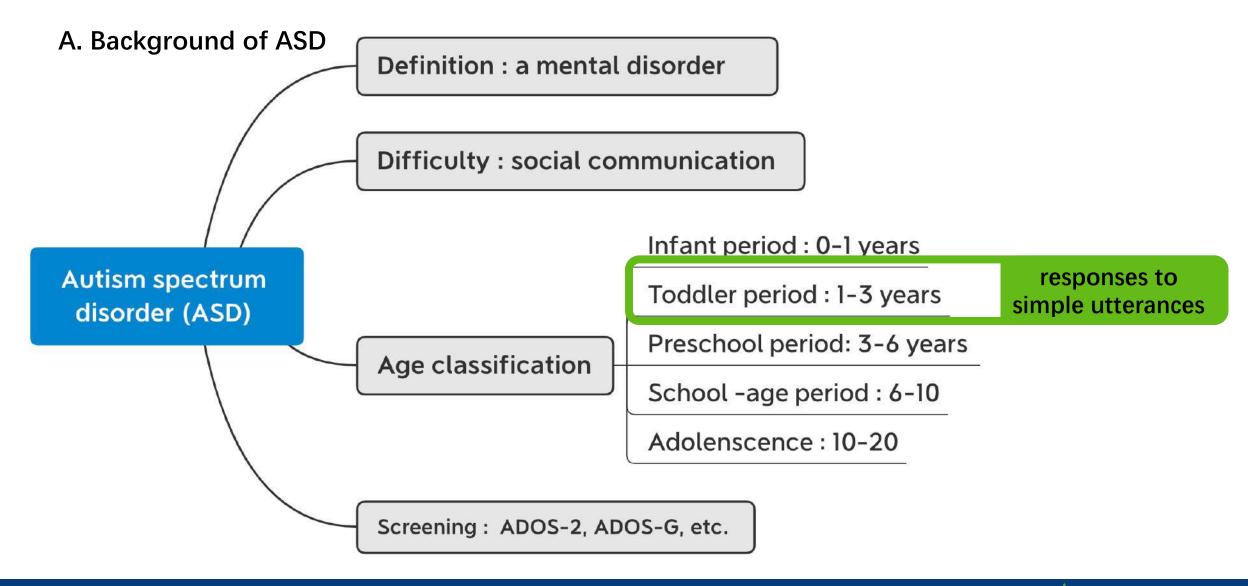


## **OUTLINE**

- 1. INTRODUCTION
- 2. RELATED WORK
- 3. PROTOCOL AND DATABASE
- 4. MULTIMODAL ASSESSMENT FRAMEWORK
- 5. EXPERIMENTS
- 6. CONCLUSION
- 7. OURTEAM



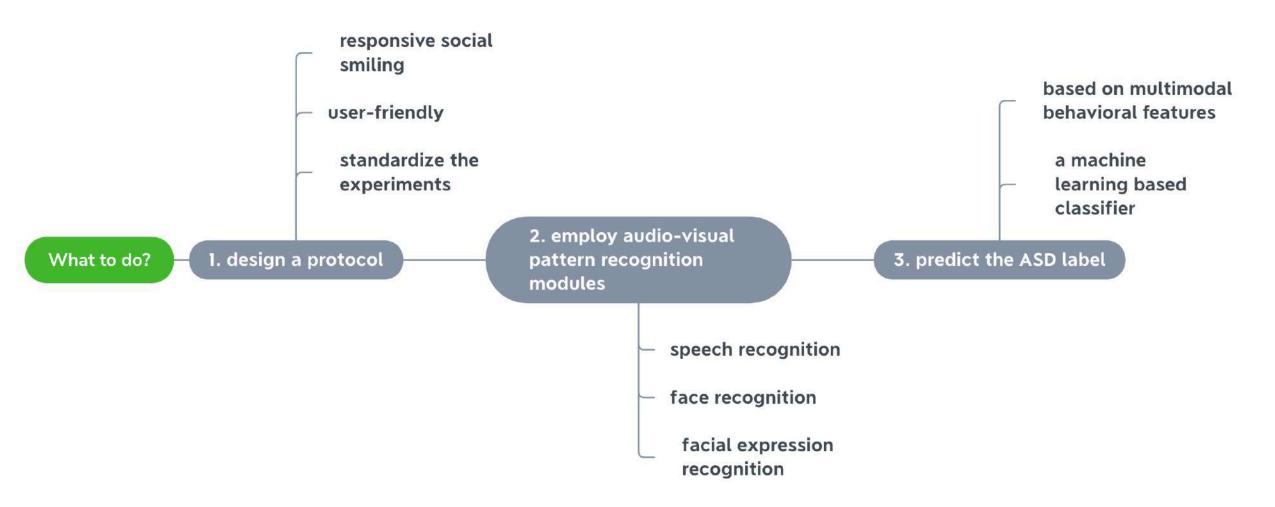
# 1. INTRODUCTION





# 1. INTRODUCTION

### B. Our proposed method





# 2. RELATED WORK

### **Technology towards ASD**

TABLE I
COMPARISONS OF TYPICAL METHODS

| Authors              | Method                  | Algorithm           | Accuracy | Sensitivity | Specificity | Data Scale    | Age     |
|----------------------|-------------------------|---------------------|----------|-------------|-------------|---------------|---------|
| 3                    |                         | NS4                 | ~        | New C       | 8000 NO.00  | (ASD/Non-ASD) | (Years) |
| Liu et al. [4]       | Eye movement            | K-means + SVM       | 88.51%   | 93.10%      | 86.21%      | 29/58         | 4-11    |
| Li et al. [5]        | Hand imitation tasks    | Linear SVM          | 86.70%   | 85.70%      | 87.50%      | 16/14         | 2-4     |
| Nakai et al. [6]     | Abnormal prosody        | SVM                 | 76.00%   | 81.00%      | 73.00%      | 31/51         | 3-10    |
| Heinsfeld et al. [7] | Neuroimaging            | Neural Networks     | 70.00%   | 74.00%      | 63.00%      | 505/535       | 7-64    |
| Ours                 | Responsive social smile | CNN + Decision Tree | 80.49%   | 85.00%      | 77.27%      | 20/21         | 1-3     |
|                      |                         |                     |          |             |             |               |         |
|                      |                         |                     |          | <b>V</b>    |             |               |         |
|                      | too expensive           |                     | Coul     | ld be bette | er          |               | Not you |

# 3. PROTOCOL AND DATABASE

### A. Procedure of the responsive social smile protocol

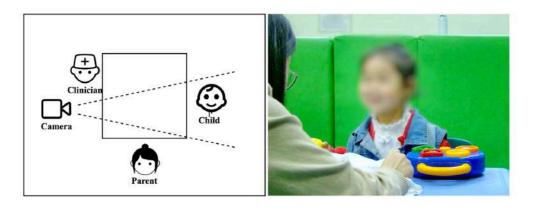


Fig. 1. The layout of the experimental environment and video recording example.

- Friendly environment :
  - green walls, colorful chairs and toys
- Audio-video recording
- Three paticipants

TABLE II STIMULI AND KEY WORDS IN A PROTOCOL.

|   | Stimulus Key Words |                               | Voice Source |
|---|--------------------|-------------------------------|--------------|
| 1 | Greeting smile     | "Hello!" + Children's names   | Clinician    |
| 2 | Praise words       | "You are so cute/cool!"       | Clinician    |
| 3 | Hide and seek      | "Let's play hide and seek'."  | Clinician    |
| 4 | Hints of tickling  | "I am going to tickling you!" | Clinician    |
| 5 | Tickling           | "Real tickling now!"          | Clinician    |
| 6 | Greeting smile     | "Hello!" + Children's names   | Parent       |

# 3. PROTOCOL AND DATABASE

### **B.** Clinical Database

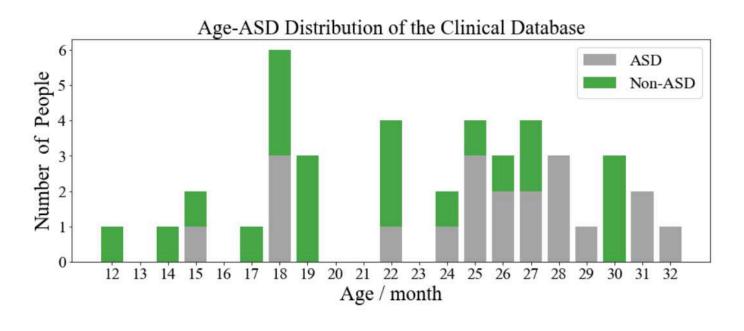
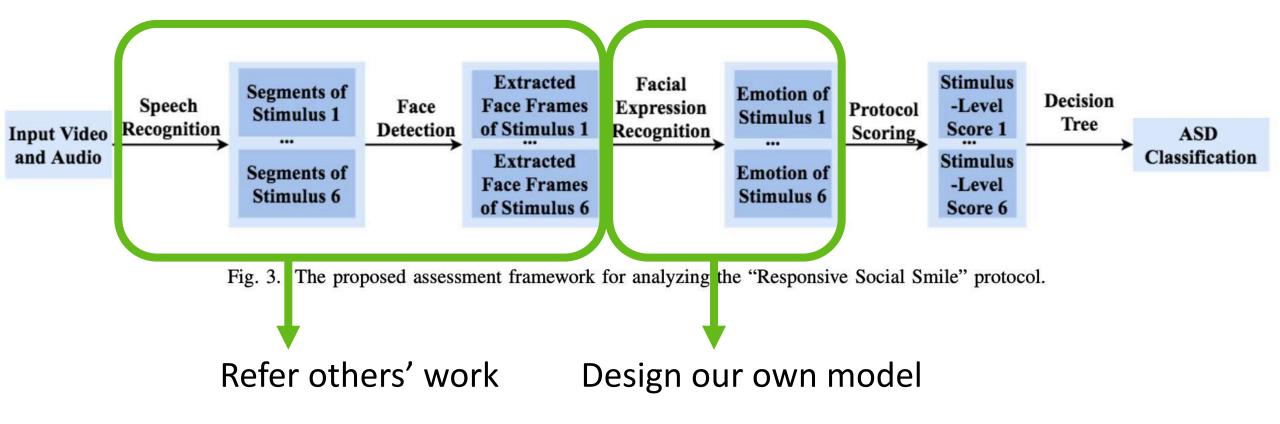


Fig. 2. Age-ASD distribution in the clinicial database.









### A. Temporal Stimulus Localization

Kaldi + AISHELL-2 database ----- Our ASR system

[12] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., "The kaldi speech recognition toolkit," in *IEEE 2011 workshop on automatic speech recognition and understanding*, no. CONF. IEEE Signal Processing Society, 2011.

[24] J. Du, X. Na, X. Liu, and H. Bu, "Aishell-2: Transforming mandarin asr research into industrial scale," arXiv preprint arXiv:1808.10583, 2018.

### **B.** Face Detection



OpenCV-DNN



[25] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library." O'Reilly Media, Inc.", 2008.



### C. Facial Expression Recognition

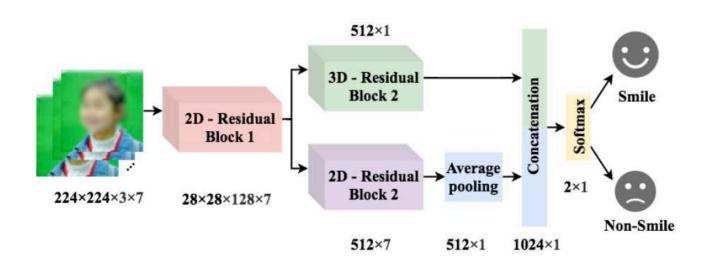


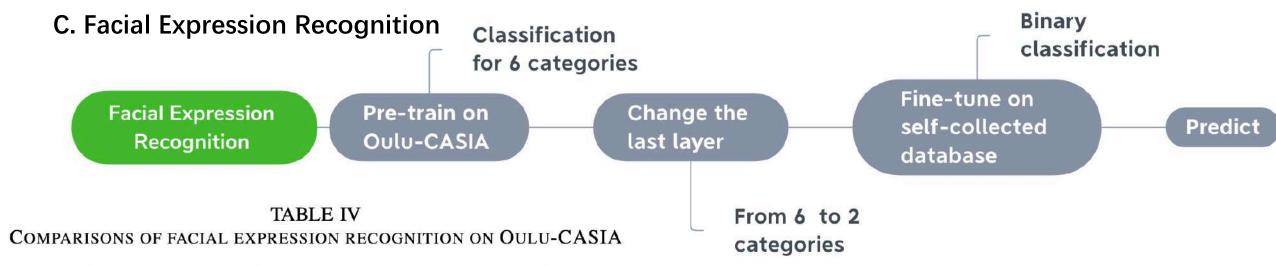
Fig. 4. Structure of the facial expression recognition neural network.



TABLE III
ARCHITECTURE OF THE FACIAL EXPRESSION RECOGNITION MODEL

| Layer Name | 2D CNN Branch                                                               |                                    | 3D CNN Branch                                                                                   |  |  |
|------------|-----------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| conv1      | 7 × 7, 64, stride 2                                                         |                                    |                                                                                                 |  |  |
| conv2      | $3 \times 3$                                                                | max po                             | ool, stride 2                                                                                   |  |  |
| CONVZ      |                                                                             | $3 \times 3, 6$<br>$3 \times 3, 6$ | $\times 2$                                                                                      |  |  |
| conv3      | $ \begin{vmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{vmatrix} \times $ | 2                                  | $\begin{vmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{vmatrix} \times 2$                     |  |  |
| conv4      | $3 \times 3, 256 \\ 3 \times 3, 256$ ×                                      | 2                                  | $ \begin{vmatrix} 3 \times 3 \times 3, 256 \\ 3 \times 3 \times 3, 256 \end{vmatrix} \times 5 $ |  |  |
| conv5      | $\begin{array}{c} 3 \times 3,512 \\ 3 \times 3,512 \end{array} \times$      | 2                                  | $3 \times 3 \times 3,512 \\ 3 \times 3 \times 3,512 \times 3$                                   |  |  |
| pooling    | average pooling                                                             | g                                  | None                                                                                            |  |  |
| merge      | concatenation, Softmax                                                      |                                    |                                                                                                 |  |  |





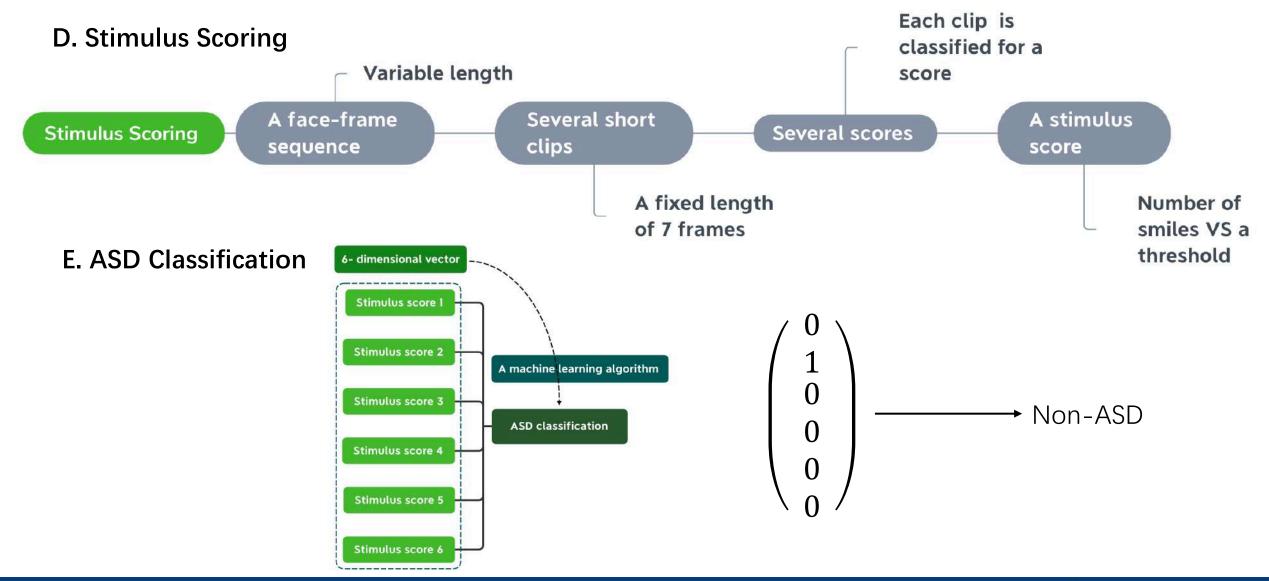
| Method            | Descriptor  | Accuracy |  |
|-------------------|-------------|----------|--|
| Yu et al. [31]    | DCPN        | 86.23%   |  |
| Jung et al. [32]  | CNN-DNN     | 81.46%   |  |
| Zhang et al. [33] | PHRNN-MSCNN | 86.25%   |  |
| Kuo et al. [34]   | CNN         | 91.67%   |  |
| Ours              | 2D-3D CNNs  | 89.10%   |  |

### Oulu-CASIA database:

480 videos (80 subjects by six expressions)

[30] G. Zhao, X. Huang, M. Taini, S. Z. Li, and M. Pietika Inen, "Facial expression recognition from near-infrared videos," *Image and Vision Computing*, vol. 29, no. 9, pp. 607–619, 2011.







### A. Experiment Settings



### A stimulus-level video:

- 20 seconds
- under the condition of 24 FPS
- approximately 480 frames



### Face images:

- resized to the shape of 224×224
- 7-frame clips



### B. Fine-tuning FER Model

### Two major problems:

- The output of the pre-trained model has six categories, which does not match with our binary classification.
  - Change the last layer.
- Most databases for facial expression recognition are collected from adults, which may not work well on young children.
  - Fine-tune on a self-collected database containing 15,000 videos.
  - Achieve the accuracy of 92.60% for smile classification on the self-collected database.



Self-collected database



### C. Results of Stimulus Scoring

Children: 41

CONFUSION MATRIX OF STIMULUS SCORING ON THE COLLECTED

TABLE V

CLINICAL DATABASE

• Stimulus scores : 196

• Threshold: 0.9 which means the child must give a clear enough response to count as smiling.

Evaluation label: majority voting from three clinicians' individual results.

Validation: leave-one-out cross validation

• **Accuracy**: 85.20%





### D. Results of ASD Classification

TABLE VII

CONFUSION MATRIX OF ASD CLASSIFICATION BASED ON PREDICTED ASD CLASSIFICATION BASED ON PREDICTED STIMULUS SCORES
STIMULUS SCORES

|        |         | Predicted |         |  |
|--------|---------|-----------|---------|--|
|        |         | ASD       | Non-ASD |  |
| Actual | ASD     | 17        | 3       |  |
| Ac     | Non-ASD | 5         | 16      |  |

- Children: 41
- Input: 6-dimensional feature vector consisting of all stimulus scores
- Missing data: mean of the other stimulus scores from the same child
- Validation: leave-one-out cross validation
- **Accuracy**: 80.49%
- **Evaluation**: predict with clinicians'' stimulus scores directly

| Algorithm           | Accuracy | Sensitivity | Specificity |
|---------------------|----------|-------------|-------------|
| Logistic Regression | 63.41%   | 66.67%      | 63.64%      |
| Naive Bayes         | 68.29%   | 65.00%      | 68.42%      |
| SVM                 | 70.73%   | 70.00%      | 70.00%      |
| Decision Tree       | 80.49%   | 85.00%      | 77.27%      |

# TABLE VIII ASD CLASSIFICATION BASED ON CLINICIAN'S STIMULUS SCORES

| Algorithm           | Accuracy | Sensitivity | Specificity |
|---------------------|----------|-------------|-------------|
| Logistic Regression | 70.73%   | 70.00%      | 70.00%      |
| Naive Bayes         | 73.17%   | 75.00%      | 71.43%      |
| SVM                 | 75.61%   | 70.00%      | 77.78%      |
| Decision Tree       | 82.93%   | 80.00%      | 84.21%      |



### E. Failure Case Study



Fig. 5. Examples of failure cases.



# 6. CONCLUSION



### **Future Research**

- Judge whether children's reactions are not due to designed stimulus.
- Fuse data from multiple complementary protocols of a child to further enhance the screening performance.



# 7. OURTEAM





SMIIP LAB, DATA SCIENCE RESEARCH CENTER, **DUKE KUNSHAN UNIVERSITY** 



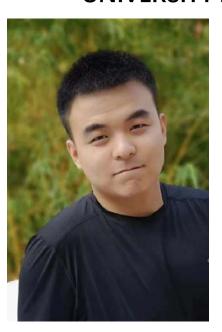
CHILD DEVELOPMENT BEHAVIOR CENTER,
THE THIRD AFFILIATED HOSPITAL OF SUN YAT-SEN
UNIVERSITY-LINGNAN HOSPITAL



**AUTHORS:** YUERAN PAN



**KUNJING CAI** 



MING CHENG



XIAOBING ZOU



MING LI





Responsive Social Smile: A Machine Learning based Multimodal Behavior Assessment Framework towards Early Stage Autism Screening

