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2> Abstract

As scanners produce higher-resolution and more densely sampled images, this raises the challenge of data storage, transmission and communication within healthcare systems. Since the quality
of medical images plays a crucial role in diagnosis accuracy, medical imaging compression techniques are desired to reduce scan bitrate while guaranteeing lossless reconstruction. This paper
presents a lossless compression method that integrates a Recurrent Neural Network (RNN) as a 3D sequence prediction model. The aim is to learn the long dependencies of the voxel’s
neighbourhood in 3D using Long Short-Term Memory (LSTM) network then compress the residual error using arithmetic coding. Experiential results reveal that our method obtains a higher =
compression ratio achieving 15% saving compared to the state-of-the-art lossless compression standards, including JPEG-LS, JPEG2000, JP3D, HEVC, and PPMd. Our evaluation demonstrates A 3p volume visualization
that the proposed method generalizes well to unseen modalities CT and MRI for the lossless compression scheme. To the best of our knowledge, this is the first lossless compression method that  of CT scans for a patient's
uses LSTM neural network for 16-bit volumetric medical image compression. entire trunk (Dataset1).

Motivation > Overview
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Medical images contain a large amount of valuable data, which also consumes a vast amount of
storage.

Radiologists use these high quality and high resolution scans for clinical purposes, including
diagnosis or precise pre-surgery planning. Therefore, keeping these scans' quality and accuracy for
accurate diagnosis while reducing storage size form a significant challenge.
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The classical (non-learned) codecs may have limited ability in representing non-linear correlations or
high-dimensional data distribution. This critical limitation rises the demand for new compression
approaches with higher flexibility and generalizability in representing nonlinearity.

Recently, the state-of-the-art deep neural networks models demonstrate great potential in
representing high-dimensional data distribution for both lossy and lossless compression performance.
Moreover, a higher compression ratio can be achieved using deep learning methods compared to
traditional linear methods.

% As the LSTM model is one of the state-of-the-art sequence models, we formulated our proposed
lossless compression approach as a supervised many-to-one sequence prediction problem and
integrates the LSTM model as 3D sequence predictor model.

% Our LSTM model takes a sequence of 3D neighbouring voxels X as input and predicts the next
intensity value .
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[>> Loss Function

% We minimize a joint loss function which is the sum
of Mean Absolute Error (MAE) and the Pearson
Correlation Coefficient (PCC).

b Model and Training Hyper-Parameters

% The proposed predictive models are Vanilla LSTM models,
which are composed of the input layer, LSTM layer with 128
cells, and a linear output layer.
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% Two different 3D neighbourhood y
shapes were applied to find the

optimal compression, namely, J

the (@ 3D cube and () 3D > D ol Slice oo Ljoine = MAE + A(1 — |PCC))
pyramid neighbouring sequence. L ampling Space Thickness YPer rarameters

Each type introduces a diverse MedzZio1 | R@ndom samples from volumes with Batch size=128, &

coverage of the block around the P pixel spacing .488 ' learning rate=5e-5

target voxel. \ / . Random samples from volumes with Batch size=128, &

: : MedZip2 . : : :
The 3D pyramid sequence with  |n both types, z=0 represents the current pixel spacing .625 learning rate=5e-5

(13x13, 9x9, 5x5, 1) sequence size  slice, the target voxel to be predicted is red,
was used as input for all the blue voxels are used as input sequences
proposed models. while the white voxels are masked.
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_2 Experimental Results -
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lllustrating the compression ratio in bits-per-pixel (BPP)
for each lossless compression method on TestSet1.
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< We evaluated the compression performance in bits-per-pixel (bpp) of the three proposed models in =0 Sore mees e TR - The first column is colour mapped by the pixel spacing
Comparison to the State'Of'the'art lossless CompreSSion methods inCIUding, some well know image :: Z:z: :zi: 55_.13:7 ::j; 55_:383 sl value of each volume. The other cells are h|gh||ghted
and volumetric codecs. | 0 aes ees oae S from the maximum compression 3.837 BPP (Blue) to
. , | 0.a88 . --- I - o-- minimum compression 6.236 BPP (Red).
% The evaluation was conducted on two test sets: | R o .
> Testset1 (42 volumes) — CT scans. o.ass S oass % gf . f

4 0.488 5.137 5.057 5.321 4.895

» Testset2 (12 volumes) — MRI scans.
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b Local Sampling
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*» Experimentally, different lengths to the target voxel were applied to select the 3D neighbouring size
with the best compression performance.

“ As expected, with the increase in the 3D cube block size, the compression rate also increases as
well as the compression time due to the longer sequence length.

* However, the 3D pyramid neighbourhood demonstrates a great balance between the compression
time and overall compression achievement. Compared to using a full cube block, there was no
performance loss in terms of the size of compressed file and the training time was substantially
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> Future Work

“* We believe that the proposed models would achieve more improvement by integrating it with
attention-based mechanisms.

2> Conclusion

% MedZip is a novel lossless compression approach using LSTM, specifically for compressing 3D medical
images (16 bit-depths).

% MedZip empirically demonstrates a higher compression ratio achieving 15% saving compared to the
state-of-the-art lossless compression standards, including JPEG-LS, JPEG2000, JP3D, HEVC, & PPMd.

% Our pre-trained LSTM models generalized well to unseen modality (MRI) and achieves a higher
compression ratio compared to the other methods.
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