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As scanners produce higher-resolution and more densely sampled images, this raises the challenge of data storage, transmission and communication within healthcare systems. Since the quality
of medical images plays a crucial role in diagnosis accuracy, medical imaging compression techniques are desired to reduce scan bitrate while guaranteeing lossless reconstruction. This paper
presents a lossless compression method that integrates a Recurrent Neural Network (RNN) as a 3D sequence prediction model. The aim is to learn the long dependencies of the voxel’s
neighbourhood in 3D using Long Short-Term Memory (LSTM) network then compress the residual error using arithmetic coding. Experiential results reveal that our method obtains a higher
compression ratio achieving 15% saving compared to the state-of-the-art lossless compression standards, including JPEG-LS, JPEG2000, JP3D, HEVC, and PPMd. Our evaluation demonstrates
that the proposed method generalizes well to unseen modalities CT and MRI for the lossless compression scheme. To the best of our knowledge, this is the first lossless compression method that
uses LSTM neural network for 16-bit volumetric medical image compression.

Abstract

A 3D volume visualization
of CT scans for a patient's
entire trunk (Dataset1).

v We evaluated the compression performance in bits-per-pixel (bpp) of the three proposed models in
comparison to the state-of-the-art lossless compression methods including, some well know image
and volumetric codecs.

v The evaluation was conducted on two test sets:
Ø Testset1 (42 volumes) – CT scans.
Ø Testset2 (12 volumes) – MRI scans.
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An overview of our proposed lossless compression framework using LSTM

Illustrating the compression ratio in bits-per-pixel (BPP)
for each lossless compression method on TestSet1.
The first column is colour mapped by the pixel spacing
value of each volume. The other cells are highlighted
from the maximum compression 3.837 BPP (Blue) to
minimum compression 6.236 BPP (Red).

Illustrating the compression ratio in BPP for the
proposed models compared to the state-of-the-art
lossless compression methods on TestSet2 (16-bits
volumes). The first column is colour mapped by the pixel
spacing value of each volume. The other cells are
highlighted from the maximum compression 2.949 BPP
(Blue) to minimum compression 4.52 BPP (Red).

A summary overview of the
compression performance
over the two test sets for all
the lossless methods. Cells
are coloured from the best
compression performance
100.00% (Blue) to the worst
performance 136.56% (Red).
(Less value indicates better
performance).

v Medical images contain a large amount of valuable data, which also consumes a vast amount of
storage.

v Radiologists use these high quality and high resolution scans for clinical purposes, including
diagnosis or precise pre-surgery planning. Therefore, keeping these scans' quality and accuracy for
accurate diagnosis while reducing storage size form a significant challenge.

v The classical (non-learned) codecs may have limited ability in representing non-linear correlations or
high-dimensional data distribution. This critical limitation rises the demand for new compression
approaches with higher flexibility and generalizability in representing nonlinearity.

v Recently, the state-of-the-art deep neural networks models demonstrate great potential in
representing high-dimensional data distribution for both lossy and lossless compression performance.
Moreover, a higher compression ratio can be achieved using deep learning methods compared to
traditional linear methods.
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v As the LSTM model is one of the state-of-the-art sequence models, we formulated our proposed
lossless compression approach as a supervised many-to-one sequence prediction problem and
integrates the LSTM model as 3D sequence predictor model.

v Our LSTM model takes a sequence of 3D neighbouring voxels W as input and predicts the next 
intensity value YM. 

Overview

LSTM	

Predictive	

Model

v Experimentally, different lengths to the target voxel were applied to select the 3D neighbouring size
with the best compression performance.

v As expected, with the increase in the 3D cube block size, the compression rate also increases as
well as the compression time due to the longer sequence length.

v However, the 3D pyramid neighbourhood demonstrates a great balance between the compression
time and overall compression achievement. Compared to using a full cube block, there was no
performance loss in terms of the size of compressed file and the training time was substantially
reduced because fewer samples were used.

Local Sampling

v The proposed predictive models are Vanilla LSTM models,
which are composed of the input layer, LSTM layer with 128
cells, and a linear output layer.

Conclusion Future Work
v We believe that the proposed models would achieve more improvement by integrating it with 

attention-based mechanisms.
v MedZip is a novel lossless compression approach using LSTM, specifically for compressing 3D medical 

images (16 bit-depths).
v MedZip empirically demonstrates a higher compression ratio achieving 15% saving compared to the 

state-of-the-art lossless compression standards, including JPEG-LS, JPEG2000, JP3D, HEVC, & PPMd.
v Our pre-trained LSTM models generalized well to unseen modality (MRI) and achieves a higher

compression ratio compared to the other methods.

b

Local Sampling Model and Training Hyper-Parameters
v Two different 3D neighbourhood

shapes were applied to find the
input sequence that can lead to an
optimal compression, namely,
the a) 3D cube and b) 3D
pyramid neighbouring sequence.

v Each type introduces a diverse
coverage of the block around the
target voxel.

v The 3D pyramid sequence with
(13x13, 9x9, 5x5, 1) sequence size
was used as input for all the
proposed models.

In both types, z=0 represents the current
slice, the target voxel to be predicted is red,
blue voxels are used as input sequences
while the white voxels are masked.

Model ID Sampling Space Slice 
Thickness Hyper Parameters

MedZip1 Random samples from volumes with 
pixel spacing .488 .625 Batch size=128, &

learning rate=5e-5

MedZip2 Random samples from volumes with 
pixel spacing .625 .625 Batch size=128, &

learning rate=5e-5

MedZip3 Random samples from volumes with 
pixel spacing .488, .578, .625 .625 Batch size=128, &

learning rate=1e-4

Loss Function
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v We minimize a joint loss function which is the sum
of Mean Absolute Error (MAE) and the Pearson
Correlation Coefficient (PCC).

fghijk = lmn + o(S − pqq )

Methodology

3D Pyramid
Neighbouring Sequence

3D Cube
Neighbouring Sequence

Neighbourhood
Block Size (13x13,9x9, 5x5,1x1) (5x5x5) (7x7x7) (9x9x9)

Bits-Per-Pixel 
(BPP) 4.267 4.702 4.478 4.36

Compression Time
(hh:mm:ss) 1:23:58 0:44:51 1:17:13 2:27:47

a b

Comparing the compression performance (compression ratio (BPP) and 
compression time)  of different neighboring sequence (3D pyramid & 3D cube) with 

different block sizes.


