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Early wildfire smoke detection in videos
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Intr on Algorithm 1 - Takes a video as an input and outputs the smoke
A novel approach that detects wildfire smoke at the Segfi”ft’on lf" :hf video flran:.es. Eashl frame; :fhde-haz;d fthtﬁn
pixel level from videos by integrating spatial and ranked by salient frame seiection moau'e, and the mask of the
temporal _ featur int mi- rvised dee selected frame is generated by the automatic mask annotation tool.
e p_o al fealu .es 9 a se. supe ,Se P The mask is used for online training the segmentation network.
Iearnlng-based_ylde_o object dete.ctlon technique. ) Finally, the spatio-temporal segmentation network returns the

* A means of mitigating the paucity of data by adopting segmentation of the smoke.

an online training method that focuses on a specific AR Teh
smoke video and transfers generic features to specific Ll s 1

. An ac_:countlng_o_f t_he physical pargmeter of haze, YVhICh Video 1 118+0.128 4+0.257 0.974+0.015
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wildfire.
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elate of Video 4 131+0.496 2510.777 0.86710.025
. In addition to using classical convolutional neural Video 5 114+0.093 2+0.186 0.990:0.004
networks, Hu et al. also considered the temporal e eTR— T =T s
aspect.
. A faster region-based convolutional neural network Video 1 0.973£0.014 0.872:0.045  0.831:0.044  0.850:0.036
was used by Kim et al. to find possible wildfire regions. Video 2 0.991:0.004 091310034  0.908:0.040  0.910:0.032
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HENE— Qualitative Results

. Dark Channel De-Haze Pre-Processor: To get rid of
the haze from the video frames, state-of-the-art
technique is adopted: single image haze removal
using dark channel prior.

. Dynamic Optimal Frame (DOF) Module: Provides two
annotated frames that help the network fine-tune the
already trained model for the specific video using the
salient frame selection module and the automatic
mask annotation tool.

. Dense Optical Flow Module: Optical flow provides the
gradient of the vertical and horizontal axis to compute
the temporal features.

° Spatio-Temporal = Segmentation Network: A fully Visualizations of de-hazed and segmentation results of consecutive
convolutional network that takes in a total of five frames from 3 videos respectively. The first row shows the original
inputs and outputs smoke masks generated for the frames; the second row is the de-hazed frame after pre-processing;

whole video. the third row is the segmentation result (smoke regions are marked
in red) for each video.

Conclusion

Algorithm 1 Wildfire smoke detection in video
WildfireSmokeDetectionM odel(video) :

Vi < ¢p(video) . Detects wildfire at an early stage using a novel semi-
where, Vy = Dehazed video supervised spatio- temporal approach.

I < ¢s(Va) ‘ , «  Takes into account the physical parameter of haze
where, I; = Optimal frame image R

I, 1,  balli, 1) surrounding the smoke.

—dlmask? mask —4> . .

where, I;, .., = Mask of frame I, . The proposed work detects smoke pixels of multiple

IF; < ¢po(It—1, 1) sizes and mitigates the problem of annotated data by

where, I F; = Flow vectors of I, and I;

using online training.
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