



# **Toward Text-independent Cross-lingual Speaker Recognition Using English-Mandarin-Taiwanese Dataset**

# Yi-Chieh Wu and Wen-Hung Liao

Dept. of Computer Science, National Chengchi University, Taipei, TAIWAN

Introduction

English-Mandarin-Taiwanese Dataset

Over 40% of the world's population is bilingual. Existing speaker identification/verification systems, however, assume the same language type for both enrollment and recognition stages. Consider the possible factors affecting the performance of a text-independent speaker recognition (TISR) system, we speculate if the language employed plays an important role. In this work, we investigate the feasibility of employing multilingual speech for biometric applications. We establish a dataset containing audio recorded in English, Mandarin and Taiwanese (6 females and 10 males, all native Mandarin speakers), as shown in Table 2.

The features, namely, i-vector[1], d-vector[2] and x-vector[3] have been evaluated for both speaker verification (SV) and identification (SI) tasks. The SI result of features comparison is shown in Table 1. Preliminary experimental results indicate that x-vector achieves the best overall performance.

| Fable 1:Pilot | Study: | Feature com | parison o | of speaker | identification | using | SVM |
|---------------|--------|-------------|-----------|------------|----------------|-------|-----|
|               | •/     |             |           |            |                |       |     |

| Model              | English                                                |        |               |        |               |        |               |        |  |  |  |
|--------------------|--------------------------------------------------------|--------|---------------|--------|---------------|--------|---------------|--------|--|--|--|
| Fastura            | Eng.                                                   |        | Man           | •      | Twn           | •      | RQ.           |        |  |  |  |
| reature            | train (N)                                              | test   | train         | test   | train         | test   | train         | test   |  |  |  |
| d-vec. $(N16/M10)$ | 91.94% (19634)                                         | 90.32% | 78.25%        | 73.05% | 68.19%        | 71.3%  | 70.01%        | 74.75% |  |  |  |
| d-vec. $(N64/M10)$ | 90.42% (19580)                                         | 88.73% | 72.98%        | 66.17% | 64.15%        | 65.05% | 70.06%        | 72.94% |  |  |  |
| i-vec.(3s)         | 100% (9467)                                            | 99.62% | 92.22%        | 91.51% | 74.71%        | 75%    | 87.02%        | 88.73% |  |  |  |
| x-vec.(Origin)     | 100% (1773)                                            | 100%   | 100%          | 100%   | 88.96%        | 89.27% | 100%          | 100%   |  |  |  |
| x-vec. $(3s)$      | 100% (9467)                                            | 99.96% | 98.61%        | 98.77% | 92.69%        | 92.41% | 96.74%        | 99.82% |  |  |  |
| Model              |                                                        | t      | 8             | Mand   | arin          |        |               |        |  |  |  |
| Footuro            | Eng.                                                   |        | Man           | •      | Twn           | •      | RQ.           |        |  |  |  |
| reature            | train                                                  | test   | train (N)     | test   | train         | test   | train         | test   |  |  |  |
| d-vec. $(N16/M10)$ | 65%                                                    | 64.82% | 95.32% (6004) | 91.12% | 70.8%         | 75.19% | 65.74%        | 70.38% |  |  |  |
| d-vec. $(N64/M10)$ | 58.86%                                                 | 57.06% | 92.57% (6261) | 88.98% | 66.19%        | 66.36% | 62.62%        | 64.91% |  |  |  |
| i-vec. $(3s)$      | 86.3%                                                  | 87.77% | 100% (5106)   | 99.56% | 76.97%        | 79.07% | 86.38%        | 86.55% |  |  |  |
| x-vec.(Origin)     | 93.91%                                                 | 94.05% | 100% (233)    | 100%   | 95.02%        | 94.92% | 100%          | 100%   |  |  |  |
| x-vec. $(3s)$      | 96.62%                                                 | 96.45% | 100% (5106)   | 99.91% | 96.66%        | 96.67% | 98.08%        | 96.55% |  |  |  |
| Model              | Taiwanese                                              |        |               |        |               |        |               |        |  |  |  |
| Fosturo            | Eng.                                                   |        | Man.          |        | Twn.          |        | RQ.           |        |  |  |  |
| reature            | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | train  | test          |        |               |        |               |        |  |  |  |
| d-vec. $(N16/M10)$ | 64.04%                                                 | 64.8%  | 79.23%        | 74.08% | 91.86% (6451) | 87.04% | 64.25%        | 71.17% |  |  |  |
| d-vec. $(N64/M10)$ | 58.81%                                                 | 58.5%  | 75.37%        | 72.17% | 88.37% (6466) | 85.17% | 63.54%        | 64.22% |  |  |  |
| i-vec. $(3s)$      | 81.93%                                                 | 81.35% | 86.92%        | 90.19% | 100% (2653)   | 96.67% | 80.82%        | 81.45% |  |  |  |
| x-vec.(Origin)     | 98.14%                                                 | 97.71% | 100%          | 98.08% | 100% (743)    | 100%   | 100%          | 100%   |  |  |  |
| x-vec. $(3s)$      | 95.33%                                                 | 96.11% | 98.79%        | 99.82% | 100% (2653)   | 100%   | 98.08%        | 98.91% |  |  |  |
| Model              |                                                        |        | Ra            | ndom G | uestions      |        |               | -      |  |  |  |
| Footuro            | Eng.                                                   |        | Man.          |        | Twn.          |        | RQ.           |        |  |  |  |
| reature            | train                                                  | test   | train         | test   | train         | test   | train (N)     | test   |  |  |  |
| d-vec. $(N16/M10)$ | 57.32%                                                 | 58.79% | 66.39%        | 63.99% | 60.16%        | 64.51% | 91.11% (2204) | 87.08% |  |  |  |
| d-vec. $(N64/M10)$ | 51.19%                                                 | 51.44% | 59.88%        | 55.29% | 53.42%        | 52.77% | 86.22% (2271) | 80.05% |  |  |  |
| i-vec.(3s)         | 82.94%                                                 | 83.96% | 87.27%        | 88%    | 70.98%        | 73.52% | 100% (1872)   | 93.45% |  |  |  |
| x-vec.(Origin)     | 95.6%                                                  | 95.65% | 98.71%        | 98.08% | 90.17%        | 91.53% | 100% (64)     | 100%   |  |  |  |
| x-vec.(3s)         | 94.57%                                                 | 95.04% | 98.55%        | 98.07% | 91.71%        | 92.96% | 100% (1872)   | 100%   |  |  |  |

| Table 2:Overview of English-Mandarin-Taiwanese Dataset |            |                                     |                             |  |  |  |  |  |  |  |
|--------------------------------------------------------|------------|-------------------------------------|-----------------------------|--|--|--|--|--|--|--|
| Terrero                                                | Number of  | Total Length                        | Length Per Utt.             |  |  |  |  |  |  |  |
| Language                                               | Utterances | (minute) $\mu$ ( $\sigma$ ) (second | $\mu$ ( $\sigma$ ) (second) |  |  |  |  |  |  |  |
| English                                                | 2210       | $\approx 202$                       | 5.79 (1.89)                 |  |  |  |  |  |  |  |
| Mandarin                                               | 285        | $\approx 60$                        | 14.1(5.16)                  |  |  |  |  |  |  |  |
| Taiwanese                                              | 920        | $\approx 67$                        | 5.39 (3.43)                 |  |  |  |  |  |  |  |
| Random Questions                                       | 80         | $\approx 22$                        | 16.75(4.68)                 |  |  |  |  |  |  |  |

### **Experimental Results**

The cross-lingual results of SVM speaker models using original and 3-second audio are shown in Table 3 and 4. The worst results are marked in red. More results are available at: http://www.cs.nccu.edu.tw/~d10402/ icpr2020.html.

| Model  | Eng        | Eng. Train |             |           | g. Te | $\mathbf{st}$ | Man. Train |       |             | Man. Test |       |       |
|--------|------------|------------|-------------|-----------|-------|---------------|------------|-------|-------------|-----------|-------|-------|
| widdei | Acc.       | L-L        | <i>a-F1</i> | Acc.      | L-L   | <i>a-F1</i>   | Acc.       | L-L   | <i>a-F1</i> | Acc.      | L-L   | a-F1  |
| Eng.   | 100%       | 0.05       | 1           | 100%      | 0.065 | 1             | 100%       | 0.204 | 1           | 100%      | 0.224 | 1     |
| Man.   | 93.54%     | 1.158      | 0.941       | 93.69%    | 1.157 | 0.942         | 100%       | 0.447 | 1           | 100%      | 0.518 | 1     |
| Twn.   | 98.14%     | 0.441      | 0.984       | 97.82%    | 0.437 | 0.98          | 100%       | 0.212 | 1           | 97.87%    | 0.229 | 0.983 |
| RQ.    | 95.33%     | 1.643      | 0.952       | 95.63%    | 1.636 | 0.953         | 98.58%     | 1.416 | 0.98        | 97.87%    | 1.468 | 0.973 |
| Mix.   | 100%       | 0.027      | 1           | 100%      | 0.034 | 1             | 100%       | 0.024 | 1           | 100%      | 0.037 | 1     |
| Model  | Twn. Train |            |             | Twn. Test |       |               | RQ. Train  |       |             | RQ. Test  |       |       |
| winder | Acc.       | L-L        | <i>a-F1</i> | Acc.      | L-L   | <i>a-F1</i>   | Acc.       | L-L   | <i>a-F1</i> | Acc.      | L-L   | a-F1  |
| Eng.   | 88.52%     | 0.52       | 0.899       | 89.16%    | 0.54  | 0.897         | 100%       | 0.181 | 1           | 100%      | 0.146 | 1     |
| Man.   | 95.55%     | 1.167      | 0.955       | 95.18%    | 1.167 | 0.955         | 100%       | 0.859 | 1           | 100%      | 0.867 | 1     |
| Twn.   | 100%       | 0.106      | 1           | 100%      | 0.166 | 1             | 100%       | 0.331 | 1           | 100%      | 0.319 | 1     |
| RQ.    | 89.96%     | 1.737      | 0.888       | 91.57%    | 1.737 | 0.913         | 100%       | 1.117 | 1           | 100%      | 1.216 | 1     |
| Mix    | 100%       | 0.038      | 1           | 98.8%     | 0.085 | 0 0 0         | 100%       | 0.056 | 1           | 100%      | 0.04  | 1     |

Table 3: Metric results of SVM models using original data

## Methodology

Fig.1 depicts a typical training/test process of the TISR architecture. To evaluate cross-lingual performance, we adopt SVM classifiers [4] in SI tasks, and PLDA classifiers [5] in SV tasks. Moreover, one speaker is selected as leave-one-out (un-enrolled). At last, a cross-lingual model trained by all language data is built to find out whether hybrid training is beneficial.



Table 4:Metric results of SVM models using 3-second audio

| Model | Eng    | ;. Tra     | in          | Eng    | g. Te     | $\mathbf{st}$ | Man. Train |           |             | Man. Test |          |             |  |
|-------|--------|------------|-------------|--------|-----------|---------------|------------|-----------|-------------|-----------|----------|-------------|--|
|       | Acc.   | L-L        | <i>a-F1</i> | Acc.   | L-L       | <i>a-F1</i>   | Acc.       | L-L       | <i>a-F1</i> | Acc.      | L-L      | <i>a-F1</i> |  |
| Eng.  | 100%   | 0.009      | 1           | 99.96% | 0.017     | 1             | 98.53%     | 0.147     | 0.984       | 98.7%     | 0.148    | 0.987       |  |
| Man.  | 96.57% | 0.295      | 0.956       | 96.43% | 0.305     | 0.949         | 100%       | 0.019     | 1           | 99.91%    | 0.039    | 0.999       |  |
| Twn.  | 95.27% | 0.356      | 0.957       | 96.04% | 0.354     | 0.96          | 98.72%     | 0.167     | 0.983       | 99.81%    | 0.137    | 0.998       |  |
| RQ.   | 94.53% | 0.494      | 0.953       | 94.95% | 0.502     | 0.953         | 98.47%     | 0.344     | 0.983       | 98.14%    | 0.341    | 0.978       |  |
| Mix.  | 100%   | 0.005      | 1           | 100%   | 0.009     | 1             | 100%       | 0.005     | 1           | 100%      | 0.01     | 1           |  |
| Model | Twn    | Twn. Train |             |        | Twn. Test |               |            | RQ. Train |             |           | RQ. Test |             |  |
| Model | Acc.   | L-L        | <i>a-F1</i> | Acc.   | L-L       | <i>a-F1</i>   | Acc.       | L-L       | <i>a-F1</i> | Acc.      | L-L      | <i>a-F1</i> |  |
| Eng.  | 92.84% | 0.302      | 0.89        | 92.25% | 0.313     | 0.88          | 96.68%     | 0.167     | 0.957       | 99.81%    | 0.117    | 0.996       |  |
| Man.  | 96.8%  | 0.248      | 0.946       | 96.6%  | 0.257     | 0.949         | 98%        | 0.245     | 0.976       | 96.3%     | 0.266    | 0.964       |  |
| Twn.  | 100%   | 0.032      | 1           | 100%   | 0.065     | 1             | 98%        | 0.261     | 0.978       | 98.83%    | 0.219    | 0.987       |  |
| RQ.   | 91.91% | 0.523      | 0.904       | 93.19% | 0.503     | 0.918         | 100%       | 0.054     | 1           | 100%      | 0.148    | 1           |  |
| Mix.  | 100%   | 0.007      | 1           | 100%   | 0.023     | 1             | 98.62%     | 0.063     | 0.984       | 100%      | 0.029    | 1           |  |

#### Conclusion

We investigated the usability of cross-lingual speech on TISR tasks through a multilingual dataset containing English, Mandarin and Taiwanese speech. We conducted a pilot study to evaluate the state-of-the-art acoustic features. The result showed that x-vector is a potential candidate for cross-lingual representation.

Figure 1:Workflow for each language round

#### **Contact Information**

• Wen-Hung Liao: whliao@nccu.edu.tw

In SI tasks, we achieved over 91% cross-lingual accuracy on all models using 3-second audio. In SV tasks, the EER among cross-lingual test is at most 6.52% on the model trained using English corpus. For the analysis of leave-one-out and enrolled users, the results indicate that there exists a certain degree of individual differences. The same speaker may perform very differently between reading aloud and answering random questions, even Mandarin is spoken in both scenarios.

#### References

- [1] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet. Front-end factor analysis for speaker verification. *IEEE Transactions* on Audio, Speech, and Language Processing, 19(4):788–798, 2010.
- [2] Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez Moreno. Generalized end-to-end loss for speaker verification. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4879–4883. IEEE, 2018.
- [3] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev Khudanpur. X-vectors: Robust dnn embeddings for speaker recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5329–5333. IEEE, 2018.
- [4] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.
- [5] Sergey Ioffe. Probabilistic linear discriminant analysis. In European Conference on Computer Vision, pages 531–542. Springer, 2006.