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Conclusion

Proposed Method

Reference

Experiment Results

UA-DETRAC dataset AP[%] comparison (* is trained and evaluated based on official codes)

Model Overall Easy Medium Hard Cloudy Night Rainy Sunny FPS GPU

DPM[2010] 25.70 34.42 30.29 17.62 24.78 30.91 25.55 31.77 0.16 -

ACF[2014] 46.35 54.27 51.52 38.07 58.30 35.29 37.09 66.58 0.66 -

RCNN[2014] 48.95 59.31 54.06 39.47 59.73 39.32 39.06 67.52 0.10 K40

CompACT[2015] 53.23 64.84 58.70 43.16 63.23 46.37 44.21 71.16 0.22 K40

Faster RCNN[2015] 58.45 82.75 63.05 44.25 62.34 66.29 45.16 69.85 11.0 Titan X

GP-FRCNN[2017] 76.57 91.79 80.85 66.05 85.16 81.23 68.59 77.20 4.0 K40

EB[2017] 67.96 89.65 73.12 54.64 72.42 73.93 53.40 83.73 11 Titan X

MSVD_SPP[2019] 85.29 96.04 89.42 76.55 88.00 88.67 78.90 88.91 9.5 Titan Xp

YOLOv3-SPP[2018] 84.96 95.59 89.95 75.34 88.12 88.81 77.46 89.46 6.5 Titan Xp

FG-BR_Net[2019] 79.96 93.49 83.60 70.78 87.36 78.42 70.50 89.89 10 M40

TSSD*[2018] 57.16 81.06 62.07 43.14 57.59 63.87 44.98 67.73 31.78 2080 Ti

TFEN(ours) 82.42 97.40 88.90 72.18 87.54 82.41 72.32 90.78 29.11 2080 Ti
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Task Problems Key Idea

• Aggregating coarse feature maps from lightweight 
extractors in the time direction for improvement.
• Predict aggregation weights with attention 

mechanism, not using the similarity of each frame.

Dataset & Implementation
• Large-Scale Surveillance Camera Video Data Set (UA-DETRAC) [2]
• With over 140,000 frames, the training and testing videos consist of 60, 40
• Shot at a resolution of 960x540

• The evaluation AP@IoU0.7 of the test set are as follows
• Overall
• Difficulty level (Easy, Medium, Hard)
• Climatic conditions (Cloudy, Night, Rainy, Sunny)

• Baseline Model (FP32)
• Feature Extractor: MobileNetV2 [4]
• Object Detector: Cascade R-CNN [1]

Model Video Temporal
Attention Decoder(TAD)

Skip Connection
(SK)

Spatial Attention
(SA)

Temporally-aware 
Feature maps(TF) Overall Easy Medium Hard

Baseline - - - - - 73.39 90.92 79.28 60.33

Model w/o TAD ✔ - ✔ ✔ ✔ 79.26 95.96 85.83 67.42

Model w/o SK ✔ ✔ - ✔ ✔ 72.53 91.26 78.57 59.24

Model w/o SA ✔ ✔ ✔ - ✔ 80.93 97.17 86.08 66.44

Model w/o TF ✔ ✔ ✔ ✔ - 79.22 95.06 84.77 65.46

(Complete ) 
TFEN ✔ ✔ ✔ ✔ ✔ 82.42 97.40 88.90 72.18

Time
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Effect of the frame number in External Memory

• From the AP& FPS trade-off figure, increasing the number of stored frames 
tends to improve the accuracy.
• 𝑚=4~6 would be the accuracy/speed trade-off point.
• From the soft attention weight figure, the coefficients after third frame are 

extremely small, so 𝑚=4 is enough.

• Insert TFEN (Temporal Feature Enhancement Network) to the existing detectors.
• Improve accuracy by improving feature maps from feature extractors.

• ConvGRU to generate 
temporal feature maps.
• Spatial & channel attention 

[3] to emphasize object 
areas.
• Compress channels for 

computational reduction

• Attentional weighting 
for frames in External 
Memory from 𝐹! and 
temporal feature map "𝐹!
• Feature aggregation in 

External Memory to 
generate the feature 
map based on the 
attention weight.

• Proposing the first temporal attention based external memory network for the
live stream of video.

• Demonstrating the real-time performance with the comparable accuracy of SoTAs.

Results

Time

TFEN TSSDBaseline Model

Overall Architecture Spatiotemporal Encoder

Temporal Attention Decoder & External Memory

AP v.s. FPS under different number m of frames to 
be stored in the external memory

Soft attention weights used in the temporal decoder 
(m=8). 

AP performance [%] of ablation models on UA-DETRAC.

Current frame only

Our goal

• Compared to SoTAs, the runtime is about x3 faster with the comparable accuracy.
• Better performance in terms of accuracy, even no difference in runtime from TSSD
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Surveillance object detection offers challenges like… 
• Dense small objects detection in high resolution
• Blur
• Out of focus
• Occlusion


