# Temporal Feature Enhancement Network with External Memory for Object Detection in Surveillance Video



Masato Fujitake<sup>1</sup>, Akihiro Sugimoto<sup>2</sup>

<sup>1</sup>Dept. of Informatics, The Graduate University for Advanced Studies, SOKENDAL <sup>2</sup>National Institute of Informatics Tokyo, Japan



## Motivation

#### Task



Surveillance object detection offers challenges like...

- Dense small objects detection in high resolution
- Blur
- Out of focus
- Occlusion

#### **Problems**



### **Key Idea**





- Aggregating coarse feature maps from lightweight extractors in the time direction for improvement.
- Predict aggregation weights with attention mechanism, not using the similarity of each frame.

## Proposed Method

#### **Overall Architecture**



- Insert TFEN (Temporal Feature Enhancement Network) to the existing detectors.
- Improve accuracy by improving feature maps from feature extractors.

## **Spatiotemporal Encoder**



- ConvGRU to generate temporal feature maps.
- Spatial & channel attention [3] to emphasize object areas.
- Compress channels for computational reduction

## **Temporal Attention Decoder & External Memory**



- Attentional weighting for frames in External Memory from  $F_t$  and temporal feature map  $\tilde{F}_t$
- Feature aggregation in External Memory to generate the feature map based on the attention weight.

## Experiment Results

### **Dataset & Implementation**

- Large-Scale Surveillance Camera Video Data Set (UA-DETRAC) [2]
  - With over 140,000 frames, the training and testing videos consist of 60, 40

**Effect of the frame number in External Memory** 

0.6

9.4 <u>ق</u>

0.3

US 0.2

0.1

(m=8).

Soft attention weights used in the temporal decoder

- Shot at a resolution of 960x540
- The evaluation AP@IoU0.7 of the test set are as follows
  - Overall

82.5

- Difficulty level (Easy, Medium, Hard)
- Climatic conditions (Cloudy, Night, Rainy, Sunny)
- Baseline Model (FP32)
  - Feature Extractor: MobileNetV2 [4]

AP v.s. FPS under different number m of frames to

tends to improve the accuracy.

extremely small, so m=4 is enough.

•  $m=4\sim6$  would be the accuracy/speed trade-off point.

be stored in the external memory

Object Detector: Cascade R-CNN [1]

#### Results

- Compared to SoTAs, the runtime is about **x3** faster with the comparable accuracy.
- Better performance in terms of accuracy, even no difference in runtime from TSSD

UA-DETRAC dataset AP[%] comparison (\* is trained and evaluated based on official codes)

|                      | Model             | Overall | Easy  | Medium | Hard  | Cloudy | Night | Rainy | Sunny | FPS   | GPU      |
|----------------------|-------------------|---------|-------|--------|-------|--------|-------|-------|-------|-------|----------|
| Current frame only - | DPM[2010]         | 25.70   | 34.42 | 30.29  | 17.62 | 24.78  | 30.91 | 25.55 | 31.77 | 0.16  | -        |
|                      | ACF[2014]         | 46.35   | 54.27 | 51.52  | 38.07 | 58.30  | 35.29 | 37.09 | 66.58 | 0.66  | -        |
|                      | RCNN[2014]        | 48.95   | 59.31 | 54.06  | 39.47 | 59.73  | 39.32 | 39.06 | 67.52 | 0.10  | K40      |
|                      | CompACT[2015]     | 53.23   | 64.84 | 58.70  | 43.16 | 63.23  | 46.37 | 44.21 | 71.16 | 0.22  | K40      |
|                      | Faster RCNN[2015] | 58.45   | 82.75 | 63.05  | 44.25 | 62.34  | 66.29 | 45.16 | 69.85 | 11.0  | Titan X  |
|                      | GP-FRCNN[2017]    | 76.57   | 91.79 | 80.85  | 66.05 | 85.16  | 81.23 | 68.59 | 77.20 | 4.0   | K40      |
|                      | EB[2017]          | 67.96   | 89.65 | 73.12  | 54.64 | 72.42  | 73.93 | 53.40 | 83.73 | 11    | Titan X  |
|                      | MSVD_SPP[2019]    | 85.29   | 96.04 | 89.42  | 76.55 | 88.00  | 88.67 | 78.90 | 88.91 | 9.5   | Titan Xp |
|                      | YOLOv3-SPP[2018]  | 84.96   | 95.59 | 89.95  | 75.34 | 88.12  | 88.81 | 77.46 | 89.46 | 6.5   | Titan Xp |
|                      | FG-BR_Net[2019]   | 79.96   | 93.49 | 83.60  | 70.78 | 87.36  | 78.42 | 70.50 | 89.89 | 10    | M40      |
| Time series frames   | TSSD*[2018]       | 57.16   | 81.06 | 62.07  | 43.14 | 57.59  | 63.87 | 44.98 | 67.73 | 31.78 | 2080 Ti  |
|                      | TFEN(ours)        | 82.42   | 97.40 | 88.90  | 72.18 | 87.54  | 82.41 | 72.32 | 90.78 | 29.11 | 2080 Ti  |

#### Time series frame

## AP performance [%] of ablation models on UA-DETRAC.

| Model               | Video    | Temporal<br>Attention Decoder(TAD) | Skip Connection<br>(SK) | Spatial Attention<br>(SA) | Temporally-aware<br>Feature maps(TF) | Overall | Easy  | Medium | Hard  |  |
|---------------------|----------|------------------------------------|-------------------------|---------------------------|--------------------------------------|---------|-------|--------|-------|--|
| Baseline            | -        | -                                  | -                       | -                         | -                                    | 73.39   | 90.92 | 79.28  | 60.33 |  |
| Model w/o TAD       | <b>√</b> | -                                  | <b>✓</b>                | V                         | <b>✓</b>                             | 79.26   | 95.96 | 85.83  | 67.42 |  |
| Model w/o SK        | <b>√</b> | <b>√</b>                           | -                       | V                         | <b>✓</b>                             | 72.53   | 91.26 | 78.57  | 59.24 |  |
| Model w/o SA        | <b>√</b> | <b>√</b>                           | <b>✓</b>                | -                         | <b>✓</b>                             | 80.93   | 97.17 | 86.08  | 66.44 |  |
| Model w/o TF        | V        | <b>√</b>                           | <b>✓</b>                | V                         | -                                    | 79.22   | 95.06 | 84.77  | 65.46 |  |
| (Complete )<br>TFEN | <b>√</b> | V                                  | <b>✓</b>                | V                         | <b>√</b>                             | 82.42   | 97.40 | 88.90  | 72.18 |  |



in *CVPR*, 2018, pp. 4510–4520.









## Conclusion

Proposing the first temporal attention based external memory network for the live stream of video.

• From the AP& FPS trade-off figure, increasing the number of stored frames

• From the soft attention weight figure, the coefficients after third frame are

Demonstrating the real-time performance with the comparable accuracy of SoTAs.

## Reference

[1] Z. Cai and N. Vasconcelos, "Cascade r-cnn: Delving into high quality object detection," in CVPR, 2017, pp. 6154–6162. [2] S. Lyu, M.-C. Chang, D. Du, W. Li, Y. Wei, M. Del Coco, P. Carcagn`ı, A. Schumann, B. Munjal, D.-H. Choi et al., "Ua-detrac 2018: Report of avss2018 & iwt4s challenge on advanced traffic monitoring," in AVSS. IEEE, 2018, pp. 1–6. [3] J. Park, S. Woo, J.-Y. Lee, and I.-S. Kweon, "Bam: Bottleneck attention module," in BMVC, 2018. [4] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks,"