Temporal Feature Enhancement Network with External Memory for Object Detection in Surveillance Video

Masato Fujitake1, Akihiro Sugimoto2

1Dept. of Informatics, The Graduate University for Advanced Studies, SOKENDAI
2National Institute of Informatics Tokyo, Japan

Motivation

Surveillance object detection offers challenges like...
- Dense small objects detection in high resolution
- Blur
- Out of focus
- Occlusion

Task

- Proposing the first temporal attention based external memory network for the live stream of video.
- Demonstrating the real-time performance with the comparable accuracy of SoTAs.

Proposed Method

Overall Architecture

- Insert TFEN (Temporal Feature Enhancement Network) to the existing detectors.
- Improve accuracy by improving feature maps from feature extractors.

Spatiotemporal Encoder

- ConvGRU to generate temporal feature maps.
- Spatial & channel attention [3] to emphasize object areas.
- Compress channels for computational reduction

Temporal Attention Decoder & External Memory

- Attentional weighting for frames in External Memory from F_t and temporal feature map F^t_t.
- Feature aggregation in External Memory to generate the feature map based on the attention weight.

Dataset & Implementation

- Large-Scale Surveillance Camera Video Data Set (UA-DETRAC) [2]
- With over 140,000 frames, the training and testing videos consist of 60, 40
- Shot at a resolution of 960x540
- The evaluation AP@IoU0.7 of the test set are as follows
 - Overall
 - Difficulty level (Easy, Medium, Hard)
 - Climatic conditions (Cloudy, Night, Rainy, Sunny)
- Baseline Model (FP32)
 - Feature Extractor: MobileNetV2 [4]
 - Object Detector: Cascade R-CNN [1]

Effect of the frame number in External Memory

- From the AP & FPS trade-off figure, increasing the number of stored frames tends to improve the accuracy.
- $m=4$–6 would be the accuracy/speed trade-off point.
- From the soft attention weight figure, the coefficients after third frame are extremely small, so $m=4$ is enough.

Experiment Results

Results

- Compared to SoTAs, the runtime is about $x3$ faster with the comparable accuracy.
- Better performance in terms of accuracy, even no difference in runtime from TSSD

Reference