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Abstract

Despite the impressive advancement achieved in object detection, the
detection performance of small object is still far from satisfactory due to the
lack of sufficient detailed appearance to distinguish it from similar objects.
Inspired by the positive effects of super-resolution for object detection, we
propose a framework that can be incorporated with detector networks to
Improve the performance of small object detection, in which the low-
resolution image Is super-resolved via generative adversarial network (GAN)
In an unsupervised manner. In our method, the super-resolution network and
the detection network are trained jointly. In particular, the detection loss is

Experiment & Result

Image Data

We first perform experiments on PASCAL VOC that has 20 object categories.
We train all the models on VOC 2012 trainval and VOC 2007 trainval
respectively, and perform inference on their corresponding test datasets,
VOC 2012 test (11k) and VOC 2007 test (5k) respectively. To demonstrate
the effect of our work, we down-sample the PASCAL VOC datasets using
bicubic kernel to generate LR images. We focus on the resulting detection
accuracy in terms of mAP, and consider the efficiency issue in future.

Therefore, we apply the Faster R-CNN networks, both its basic version and
Its improved version which are termed as Naive Faster R-CNN and Faster R-
CNN++ respectively, as our detectors.

back-propagated into the SR network during training to facilitate detection.

From Figure 1. we conclude that super-resolution is crucial for detection.
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Comparisons and results
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Figure 1. Example of LR image (bottom-left) and its HR counterpart (up-left)and the overall error analysis of the
Faster R-CNN++ detector trained on LR images (bottom-right) and HR images (up-right). The comparison
demonstrates the large gap between the detection performance of HR images and LR images.
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We compare our framework with other settings:

» FASR and FASR++ are with Naive Faster R-CNN and its higher version

» Original/FASR: results on the original (gt) high-resolution images

» Bicubic/FASR, EDSR/FASR, CysSR/FASR represent results on the SR
Images obtained using bicubic, EDSR, and CycleGAN respectively
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EDSR/FASR 0.605 0.550

Discriminator Cyc-SR/FASR 0.624 0.566
- : : Ours/FASR 0.658 0.594
LR/SSD LR/FFPN  Bicubic/FASR++ EDSR/FASR++ Cyc-SRIFASR++ Ours/FASR++
Figure 4. Examples of detection results. Table 2. Detection results of different methods (loU=0.5).
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Figure 2. Flowchart of the proposed coarse-to-fine registration framework for multi/hyperspectral images. [ 444I0yc SR PASR++
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The pipeline of our proposed method is shown in Figure 2. The processing e = oo o
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Figure 5. Overall detection performance on all/large/medium/small objects.

Table 2 reports overall results on VOC2007 and VOC2012 datasets. Figure 4.
gives some visualizations of detection results. Figure 5. shows the curves of
the recall-precision on VOC2007 dataset w.r.t all, large, medium, and small
Size objects, respectively. Our framework exceeds other methods in all scales.

HR image provided as reference from other high-quality dataset. Tz is down-
sampled version of Tygr. Ty IS the super-resolved HR image from Tyg.

CycleGAN-based SR network
CycleGAN strategy is shown as up figure of Figure. 3. we use CycleGAN-

like architecture for image super-resolution, which is shown as bottom of | | BESHESES S I BE o BE0SIESe \We conduct inference on more challenging
Figure. 3. Training loss Is defined as: Dy Oy _______ " scenarios shown in Figure 5. All the models
) Gy ) e never see those images during training, and
LcycG AN = LG AN + Achyc + AZLIdt X # Y “Groundtruth  Original/FASR++ Bicubic/FASR¥+  EDSR/FASR¥+  Cycsk/FAske+ Ours/faskes QU methOd aCh|eveS the best reSUItS(TabIe 3)
- Figure 5. Examples of the detection results on
where: L . log(D(I,;) Gx ““““““““““““““““““““ challenging images _ Dataset* | Original Bicubic EDSR Cyc-SR | Ours
GAN . EIHR Pdata(IHR)_l[Ogg(g _ZRG )](I ))] We report the average PSNR Values IN VOC2007/L 0.755 0.520 0.576 0.544  0.590
bl ve e — G| our previous experiments(Table 4). Clearly, 'St 20 g% oo o oo
Lcyc — EILRNPdata(ILR)[l GdW(GUP (ILR)) _ ILR”Z] lr(l'LR) \__ __f_f__',,./ |HR D Cyc_SR Outperforms our SR reSU|tS IN VOC2b0|12;E 0.569 l 0.304h ||0.247 0.200 (l 35245)
— . Table 3. mAP results on challenging images(loU=0.5).
Gdw terms of PSNR. This result demonstrates

Figure 3. lllustration of the pipeline of CycleGAN(up),
CycleGAN-like SR network(bottom).

Ligt = ETLR~Pdata(TLR)[ |Gyp (TLr) — THR“Z]

Method* Bicubic EDSR  Cyc-SR Ours

that the SR network of our method is
detection-driven, which contributes more

PSNR 18.49 18.55  25.38 2242

Discriminator networks

Table 4. Averaging PSNR values of different methods. o

Firstly, architecture of discriminator network D is shown in Table 1, which if for

distinguishing the real HR images from the generated super-resolved images. Discussion & Conclusion

Secondly, we employ detector as another

discriminator for obiect localization and ayer | conv | conv | BN | conv | BN | conv | BN | conv In this work, we propose a framework to facilitate small object detection
classification. We sjtud the naive Faster |ome=] 4 | 4 1 - | 4 [ - 14 | - ¢ leveraging on simultaneous super-resolution in an end-to-end manner. Our SR
' i emenm oo o m -2 11 network and detection network are trained jointly. Particularly, the detection

R-CNN using VGG16 as backbone and ' = * - * -~ * -~ .t .-~
prediCtS ObjeCtS in the |aSt CO”VO'Utional Table 1. Architecture of discriminator D.
layer. The training loss is defined as:

Lpet = Legs + /LCreg

loss is back-propagated into the super-resolution network during training to
facilitate detection. Compared with the available simultaneous super-resolution
and detection methods which heavily rely on low-/high-resolution image pairs,
our work breaks through such restriction via applying the CycleGAN strategy,
achieving increased generality and applicability. We are going to extend our
work to realize instance segmentation of small object, which could provide
more valuable information to facilitate precise scene analysis.

Finally, we train the generators anc
discriminators alternatively

where: Les = Ejpmpygat—108(Dets (Gyp(ILr)))]

Lreg = Ep p~pP gz [SMOOLR, (Detloc(GUP (ILR))» t.)]
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