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Deep Processing of Noisy Images

* Faint edge detection
* Noisy image classification
* Natural image denoising



Architecture
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Faint Edge Detection
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Fig. 1. Example of a medical image with many curved edges. (a) The original
image. (b) The proposed FED-CNN approach results. (c) FastEdges [22]
results. Both methods achieve high quality of detection while ours run in
milliseconds and FastEdges runtime is more than seconds.



Dice Coefficients Loss

y' = network output
y = ground truth label
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Quantitative Results
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Visual Results
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Fig. 8. Result on image from the binary images dataset [16] that we used to
train and test our network. Left: the input noisy images with a binary pattern.
Middle: the ground truth labels. Right: our detections. FED-CNN result is Fig. 9. Examples of real images. Left: the original gray scale images. Middle:
very similar to the ground truth and we manage to detect and track edges our results. Right: FastEdges [22] results. Both methods achieve high quality
even at high curvatures. of detections.




Noisy image classification




Classification Results
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Natural Image Denoising Method
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Image Denoising Results e
IDCNN-E 31.00/0.9 | 28.86/0.85 | 25.95/0.75
IDCNN 30.80/0.89 | 28.73/0.84 | 25.93/0.75
DnCNN 31.74/0.9 | 29.89/0.85 | 25.69/0.71
BM3D 31.07/0.88 | 28.26/0.81 | 24.57/0.67

(b)

Fig. 2. Denoising result at additive noise of 50 standard deviation, of the
proposed multi-scale network trained by our edge preservation loss. (a) The
noisy input image. (b) The results of the proposed scheme. (¢) Denoising
results of the state-of-the-art DnCNN [34] approach. Our method achieves
the highest SSIM [31] scores in our experiments at all the noise levels.



Conclusions and Summary

* We introduced methods for multiscale processing of noisy images
using edge preservation loss.

* FED can be carried out by deep CNN.
* Noisy image classification can be improved by CNN preprocessing.

* Edge preservation loss improves the quality of natural image
denoising by a multiscale CNN.



