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B We develop a novel learning strategy to find efficient feature embeddings while
maintaining the balance of accuracy and model complexity.

m Existing triplet loss methods select only the hard identity examples which may not be optimal
without considering easy examples in the triplet anchor.

Fig 1. Training mini-
batches consisting of
easy, medium-hard and
over-hardexamples.

Early-stage iterations: Late-stage iterations:
add medium-hard samples add over-hard samples
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Fig. 2: Overview of the proposed RelD network architecture. “Anc.”, “Pos.” and “Neg.” represent
anchor image, positive images that belong to the same identity and negative images that belong to
different identities, respectively.
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Problem Formulation

Main idea: Training the RelD model based on Progressive Learning Algorithm.

m Input: A fixed-size mini-batch consisting of P = 16 randomly selected identities and
K = 8 randomly selected images per identity from the training set.

m Output: The optimal hyperparameter w* along with the well trained CNN.

m Initialization: Randomly initialize N sets of hyper-parameters W = {wy, wo,--- , wy}
where w; = (A;, m;, ki, p;), Ai € [0,2], m; € [-0.1,0.3], k; € [1,8], p; € [1,16] for
i=1,--- N

m Loss function: P
GBH Z Z In (1 + em+Tk_p(a,b.n)) (1)
J=1 .
Ya= }’b—’
ckep (6; X) = Lsottmax (6: X) + ACGBH (6: X) (2)
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Repeat:
for each hyperparameter i = 1 to N do
Exploration: Backpropagate CNN in 20 epochs and evaluate the loss £ according to Eq.
1 and Eq. 2, and evaluate the Bayesian objective f (w;).
Restoration: CNN weights are restored to that before 20 epochs of exploration.
end for
Exploitation: Based on f (W) , obtain a new improved candidate w’ and update Gaussian
process according to Eq. 3 and Eq. 4, and add w' to W, and update w as well;
Backpropagate to update CNN weights for 300 epochs based on the new hyperparameter
w and the feed-forward loss £;
Save the model with lowest loss £ for the current hyperparameter w;
Until maximum epochs (M = 3, 000) reached
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For N sets of such parameters we denote W = {wy, wp,--- ,wy} , and the corresponding
f (W), the posterior belief of f at a new candidate w is given by

f(w) ~ GP (u(W) + Au, K (w) — AK)
Ap=K (W, W) K (W)™ (f (W) — u(W)) 3)
AK = K (w, W) K (W)™ K (W, w)

The expected improvement of a candidate w is defined as
1
£ (w) = (K(w) — AK)z (Z22(2) + ¢ (£)) (4)
Bayesian optimization minimizes the following objective function:
L{P (6, w; X) — LiP (6; w; X)

f(w)=| L—l;p (6; w; X)

—&D| (%)
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We perform all the experiments on three commonly used benchmarks: Market-1501,
DukeMTMC-RelD (briefed as DukeMTMC), and CUHKO03(D) & CUHKO3(L) datasets.

These RelD datasets are summarized in Table 1.

Table 1: RelD Benchmark datasets used in ourexperiments.

Dataset Marketl501 DukeMTMC CUHKO3(D/L)
Identities 1,501 1,812 1,360
Bboxes 32,668 36,411 13,164
Camera 6 8 6
Trainimages 12,936 16,522 7,365/7,368
Train ids 751 702 767
Query images 3,368 2,228 1,400
Query ids 750 702 700
Gallery images 19,732 17,661 5,332
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Category Methods Market1501(SQ)  Market1501(MQ) CUHKO03(D) CUHKO3(L) DukeMTMC
mAP  Rank-1 mAP Rank-1 mAP  Rank-1 mAP  Rank-1 mAP  Rank-1

HA-CNN[7] 75.7 91.2 82.8 93.8 38.6 41.7 41.0 444 63.8 80.5

Deep-Person[36] 79.6 923 85.1 94.5 - - - - 64.8 80.9

PCB[1] 774 92.3 - - 54.2 61.3 - - 66.1 81.7

part PCB+RPP([1] 81.6 93.8 - - 57.5 63.7 - - 69.2 83.3
Aligned-RelD[35] 82.3 92.6 - - - - - - - -

MGN[2] 86.9 957 90.7 96.9 66.0 66.8 67.4 68.0 78.4 88.7

SVDNet[5] 62.1 82.3 - - 37.2 415 37.8 40.9 56.8 76.7
TriNet[6] 69.1 84.9 76.4 90.5 - - - - - -

global GP-reid[24] 81.2 922 82.8 93.8 - - - - 72.8 85.2

DaRe[9] 74.2 88.5 - - 58.1 61.6 60.2 64.5 63.0 79.1

PLA 83.6 93.7 88.4 95.2 63.2 67.2 67.5 71.5 72.5 84.3
Trinet [6] 81.1 86.7 87.2 91.8 - - - - - -

RK DaRe [9] 85.9 90.8 - - 712 69.8 73.7 72.9 79.6 84.4
MGN (2] 94.2 96.6 95.9 97.1 - - - - - -

PLA 89.4 94.7 929 95.7 77.2 75.5 81.0 79.6 80.1 87.0

Table 2 : Comparing PLA with different global models on all datasets. “RK” stands for reranking.
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Computation and Memory Cost
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a) Accuracy vs. computation cost (number of Mul-Add); b) Accuracy vs. inference memory (MB).

Accuracy is reported as the average mAP on all datasets.
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m A novel learning approach is proposed to find efficient feature embeddings while
maintaining the balance of accuracy and model complexity.

m A novel method is developed to explore the hard examples and build a discriminant
feature embedding yet compact enough for large-scale applications.

m A novel Bayesian approach is employed to progressively learn the triplet loss from
simple to hard samples.

m The developed reid system is efficient in both computation and memory, rendering it a
commercial system.
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