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Motivations

We develop a novel learning strategy to find efficient feature embeddings while  

maintaining the balance of accuracy and model complexity.

Existing triplet loss methods select only the hard identity examples which may not be  optimal 

without considering easy examples in the triplet anchor.
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Fig 1. Training mini-

batches consisting of 

easy, medium-hard and 

over-hardexamples.



Framework

Fig. 2: Overview of the proposed ReID network architecture. “Anc.”, “Pos.” and “Neg.” represent  

anchor image, positive images that belong to the same identity and negative images that belong to  

different identities, respectively.
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Progressive Learning Algorithm
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Bayesian Algorithm
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Datasets

We perform all the experiments on three commonly used benchmarks: Market-1501,

DukeMTMC-ReID (briefed as DukeMTMC), and CUHK03(D) & CUHK03(L) datasets.

These ReID datasets are summarized in Table 1.

Table 1: ReID Benchmark datasets used in ourexperiments.

Dataset Market1501 DukeMTMC CUHK03(D/L)

Identities 1,501 1,812 1,360

Bboxes 32,668 36,411 13,164

Camera 6 8 6

Train images 12,936 16,522 7,365/7,368

Train ids 751 702 767

Query images 3,368 2,228 1,400

Query ids 750 702 700

Gallery images 19,732 17,661 5,332
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Precision Performance

Table 2 : Comparing PLA with different global models on all datasets. “RK” stands for reranking.

Zhen Li, Liang Niu, Hanyang Shao, Nian Xue* 10.12.2020 7 / 14Progressive Learning Algorithm for Efficient Person Re-Identification



Computation and Memory Cost
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Fig. 3 a) Fig. 3 b)

a) Accuracy vs. computation cost (number of Mul-Add); b) Accuracy vs. inference memory (MB).

Accuracy is reported as the average mAP on all datasets.
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Conclusions

A novel learning approach is proposed to find efficient feature embeddings while  

maintaining the balance of accuracy and model complexity.

A novel method is developed to explore the hard examples and build a discriminant  

feature embedding yet compact enough for large-scale applications.

A novel Bayesian approach is employed to progressively learn the triplet loss from  

simple to hard samples.

The developed reid system is efficient in both computation and memory, rendering it a  

commercial system.
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