Learning Graph Matching Substitution Weights based on a Linear Regression Shaima Algabli & Francesc Serratosa

Universitat Rovira i Virgili, Tarragona, Catalonia, Spain {shaima.ahmed, francesc.serratosa}@urv.cat

UNIVERSITAT ROVIRA i VIRGIL

Learning Graph Matching Substitution Weights based on a Linear Regression Shaima Algabli & Francesc Serratosa

Universitat Rovira i Virgili, Tarragona, Catalonia, Spain {shaima.ahmed, francesc.serratosa}@urv.cat

Introduction

Attributed graphs are structures that are useful to represent objects through the information of their local parts and their relations.

We present a method to **learn the weights** on nodes and edges.

These weights gauge the **importance** of each attribute while computing the distance between graphs.

UNIVERSITAT ROVIRA i VIRGIL

UNIVERSITAT ROVIRA i VIRGIL

Shaima Algabli & Francesc Serratosa Universitat Rovira i Virgili, Tarragona, Catalonia, Spain {shaima.ahmed, francesc.serratosa}@urv.cat

Graph Edit Distance

The Graph Edit Distance between two attributed graphs is defined as the transformation from one graph into another through edit operations.

These edit operations are: Substitution, deletion and insertion on nodes and edges. Every edit operation has a cost depending on their attributes.

Shaima Algabli & Francesc Serratosa Universitat Rovira i Virgili, Tarragona, Catalonia, Spain {shaima.ahmed, francesc.serratosa}@urv.cat

UNIVERSITAT ROVIRA i VIRGIL

Learning model

Database with node-to-node mappings

Euclidean space

Our **learning method** learns the weights on nodes and edges in two steps:

-Embedding the node-to-node mappings:

It embeds the ground truth node-to-node mappings into a Euclidean space.

Learning Graph Matching Substitution Weights based on a Linear Regression Shaima Algabli & Francesc Serratosa

UNIVERSITAT ROVIRA i VIRGILI

Universitat Rovira i Virgili, Tarragona, Catalonia, Spain {shaima.ahmed, francesc.serratosa}@urv.cat

Learning model

-Deducing a hyperplane:

It computes a linear regression of the embedded points.

The hyperplane constants are the weights we want to learn.

Euclidean space

UNIVERSITAT ROVIRA i VIRGIL

Shaima Algabli & Francesc Serratosa Universitat Rovira i Virgili, Tarragona, Catalonia, Spain {shaima.ahmed, francesc.serratosa}@urv.cat

Experimental evaluation

Weights to be learn

 $D(m'_a, m_i) = \alpha \cdot sd(m'_a, m_i) + \beta \cdot dd(m'_a, m_i)$ $sd(m'_{i}, m_{i}) = \sqrt{(x'_{i} - x_{i})^{2} + (y'_{i} - y_{i})^{2}}$ $dd(m'_{j},m_{i}) = \min\{\theta'_{j} - \theta_{i}|, 360^{\circ} - |\theta'_{j} - \theta_{i}|\}$

UNIVERSITAT ROVIRA i VIRGIL

Shaima Algabli & Francesc Serratosa

Universitat Rovira i Virgili, Tarragona, Catalonia, Spain {shaima.ahmed, francesc.serratosa}@urv.cat

Experimental evaluation

Weights to be learn

 $D(m'_a, m_i) = \alpha sd(m'_a, m_i) + \beta dd(m'_a, m_i)$ $sd(m'_{i}, m_{i}) = \sqrt{(x'_{j} - x_{i})^{2}} + (y'_{j} - y_{i})^{2}$

 $dd(m'_{j},m_{i}) = \min\left\{\theta'_{j}-\theta_{i}\right\},360^{\circ}-\left|\theta'_{j}-\theta_{i}\right\}$

UNIVERSITAT ROVIRA i VIRGIL

Shaima Algabli & Francesc Serratosa Universitat Rovira i Virgili, Tarragona, Catalonia, Spain

{shaima.ahmed, francesc.serratosa}@urv.cat

Experimental evaluation

CR: classification ratio HD: Hamming distance

Method	DB	1	2	3	4	5	6	7	8	9	10	11	12
Our	SL	30	39	43	53	36	40	40	42	35	38	47	56
method	CR	1	1	0.98	0.91	1	1	0.91	0.80	1	0.91	0.78	0.57
0.05sec	Н	0.01	0.05	0.06	0.19	0.07	0.10	0.15	0.20	0.07	0.12	0.19	0.25
Leordeano	SL	28	39	46	52	38	40	40	44	29	37	45	63
10 min	CR	.9	1	0.95	0.90	1	0.97	0.89	0.81	1	0.92	0.81	0.57
	Н	0.03	0.15	0.16	0.22	0.09	0.11	0.12	0.18	0.07	0.2	0.18	0.23
Caetanu	SL	38	24	10	4	250	142	37	42	406	72	55	59
5 min	CR	1	1	1	1	1	0.92	0.91	0.87	1	0.93	0.77	0.57
	Н	0.01	0.04	0.03	0.08	0.08	0.14	0.15	0.18	0.06	0.12	0.19	0.25
Cortés	SL	30	39	Inf	Inf	36	41	Inf	42	-	-	48	64
8 min	CR	1	1	0.12	0.03	1	1	0.01	0.8	-	-	0.78	0.55
	Н	0.01	0.05	0.66	0.67	0.07	0.10	0.63	0.20	-	-	0.19	0.26