

Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference

Jiansheng Fang, Xiaoqing Zhang, Yan Hu, Yanwu Xu, Ming Yang and Jiang Liu Harbin Institute of Technology Southern University of Science and Technology

CVTE Research

2020.11.28

- Latent Factor Model (LFM) is one of the most successful methods for Collaborative Filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space.
- LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation.
- However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions.

The recommendation problem is formulated as a problem of predicting unobserved rating.

Problem(2)

$$\hat{r}_{ui} = f(r_{ui} | \mathbf{p}_u, \mathbf{q}_i) = \mathbf{p}_u^T \mathbf{q}_i = \sum_{k=1}^K p_{uk} q_{ik}$$
overfitting

The optimal estimation method learns the model parameters of LFM by minimizing the regularized squared error.

$$\min_{\mathbf{p}_*,\mathbf{q}_*} \sum_{(u,i,r_{ui})\in\mathbf{D}} (r_{ui} - \mathbf{p}_u^T \mathbf{q}_i)^2 + \lambda(\|\mathbf{p}_u\|^2 + \|\mathbf{q}_i\|^2)$$

Methodology(1)

Prior Assumption

 $p(p_{uk}|\mu_{uk},\sigma_{uk}) \sim \mathcal{N}(\mu_{uk},\sigma_{uk}),$

 $p(q_{ik}|\mu_{ik},\sigma_{ik}) \sim \mathcal{N}(\mu_{ik},\sigma_{ik}).$

$$p(b_u | \overline{r}) \sim \mathcal{N}(0, \overline{r}),$$
$$p(b_i | \overline{r}) \sim \mathcal{N}(0, \overline{r}).$$
$$b_{ui} = \overline{r} + b_u + b_i.$$

The likelihood function of BLFM

$$p(r_{ui}|\mathbf{p}_u, \mathbf{q}_i) \sim \mathcal{N}(\sum_{k=1}^{K} p_{uk}q_{ik}, \overline{r}).$$

The likelihood function of BLFMBias

$$p(r_{ui}|\mathbf{p}_u, \mathbf{q}_i, b_u, b_i) \sim \mathcal{N}(\sum_{k=1}^{K} p_{uk}q_{ik} + b_{ui}, \overline{r}).$$

Fig. 2. The graphical model of BLFMBias.

 $q^* = \arg \min KL(q(\mathbf{p}_u, \mathbf{q}_i) || p(\mathbf{p}_u, \mathbf{q}_i | \mathbf{D})).$ $q(\mathbf{p}_u, \mathbf{q}_i) \in Q$ $KL(q(\mathbf{p}_u, \mathbf{q}_i) || p(\mathbf{p}_u, \mathbf{q}_i | \mathbf{D})) =$ $\mathbb{E}[\log q(\mathbf{p}_u, \mathbf{q}_i)] - \mathbb{E}[\log p(\mathbf{p}_u, \mathbf{q}_i | \mathbf{D})].$ $ELBO(q) = \mathbb{E}[\log p(\mathbf{p}_u, \mathbf{q}_i, \mathbf{D})] - \mathbb{E}[\log q(\mathbf{p}_u, \mathbf{q}_i)].$ $\hat{r}_{ui} = \int_{\mathbf{p}_u, \mathbf{q}_i} p(r_{ui} | \mathbf{p}_u, \mathbf{q}_i) p(\mathbf{p}_u, \mathbf{q}_i | \mathbf{D}) \mathrm{d}\{\mathbf{p}_u, \mathbf{q}_i\}.$

Methodology(2)

Experiment(1)

Movielens						
Factors	SVD	PMF	BPMF	BLFM		
RMSE@8	1.0274	1.0256	0.9871	0.9781		
RMSE@16	1.0256	1.0076	0.9840	0.9836		
RMSE@32	1.0278	0.9999	0.9875	0.9852		
RMSE@64	1.0141	0.9952	0.9867	0.9826		

Movielens						
Factors	BLFM	SVDBias	BLFMBias			
RMSE@8	0.9781	0.9581	<u>0.9406</u>			
RMSE@16	0.9836	0.9570	0.9397			
RMSE@32	0.9852	0.9573	<u>0.9410</u>			
RMSE@64	0.9826	0.9572	<u>0.9452</u>			

Fig. 3. Performance of RMSE on validation set and test set.

Experiment(2)

Fig. 5. Setting the number of fit iterations and samples. THE CHARACTERISTIC OF THE STATE-OF-THE-ART MODELS

Index	SVD	PMF	BPMF	BLFM
PM	MAP	MAP	Bayesian	Bayesian
RG	Parameter	Parameter	Prior	Prior
RP	medium	lower	higher	medium
FS	Good	Bad	Bad	Good

www.imed-lab.com

THANKS!

Jiansheng Fang iMED Lab 2020.12.06

Github: https://github.com/fjssharpsword Blog: https://blog.csdn.net/fjssharpsword