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Introduction

I Quality of unidirectional tapes (UD-Tapes)
I Production process (temperature and production speed)

I Foresee the end value product

Figure 1: A vision-based thermography system is used to control the quality of a
tape production process.
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Motivation and Challenges

Motivation
I Efficient quality assessment
I Understanding of local fiber

deviations
I 30% reduced scrap rate and

decreased production cycle
time [1]

Challenges
I Poor quality images
I Changing position of the tape
I Faults appearing in diverse

shapes and sizes
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Experimental Pipeline

Figure 2: Experiment Pipeline
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UD-Tape dataset and Image Pre-processing

Dataset

I 450 Thermographic images ofthe size 768x1024 pixels.
I Changing illumination

Image Pre-processing

I Structural similarity analysis
I Histogram analysis
I Histogram Equalisation
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Tape Detection
Grab-Cut ROI
I Create labels and cluster pixels according to their intensity via a

Gaussian Mixture Model (GMM) [2]
Faster-RCNN ROI
I Faster-RCNN [3] trained on 60 augmented images with a detection

accuracy of 95.7%.

Figure 3: Quantitative IoU results for predicted images shows Grab-cut gives
averagely better results than Faster-RCNN.
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Spot Detection

Image enhancement
I Enhancement using morphological operations such as dilation and

erosion
I Linear filter, in convolution with a point structuring element

Feature Descriptors
I Histogram of Oriented Gradients (HOG) [4]
I Features from Accelerated Segment Test (FAST) [5]
I Oriented FAST and Rotated BRIEF (ORB) [6]
I Scale Invariant Feature Transform (SIFT) [4]
I Speed-up Robust Features (SURF) [5]
I Canny edge detection (CANNY) [7]

Somesh Devagekar Fault Detection in Uni-directional Tape Production using Image Processing 8/16



Spot Detection Results

I Canny edge detection provides the best edge completeness and noise
suppression

Feature
descriptor

Total number
of detections
(TP+FP)

Correctly
detected
(TP)

Incorrectly
detected
(FP)

HOG 14 9 5
FAST-TRUE 254 20 234
FAST-FALSE 1650 20 1630

SIFT 87 17 67
SURF 295 20 275
ORB 318 20 298

CANNY 24 20 4

Table 1: Quantitative results of feature descriptors to detect the markers and the
faults on a tape

Somesh Devagekar Fault Detection in Uni-directional Tape Production using Image Processing 9/16



Spot Detection

Feature Descriptors
I Aspect-Ratio
I Approximate number of sides of a void
I Relative location of a void in the image
I Shape of the void
I Center of mass

Features Feature 1 Feature 2 Feature 3 Feature N
Aspect-Ratio 1.5 0.3 1.17 ...

Position 352,692 0,688 212,648 ...
Shape Half-circle NA Circle ...

Approx sides 9 14 17 ...
Table 2: Features from UD-Tape dataset.

I Feature set has two classes as ‘marker’ and ‘non-marker/faults’
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Fault Detection
Machine Learning Techniques

I Support Vector Machines(SVM)
I Decision trees
I K-Nearest Neighbour(K-NN)

I Logistic Regression
I Naive Bayes
I Random forests

(a) Unbalanced data distribution (b) Stratified data distribution

Figure 4: UD-Tape data distribution of data over the two classes of markers and
tape faults is shown.
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Fault Detection Results
I Random forest and logistic regression outperform the other classifiers
I Similarity of performance is influenced by the type of dataset rather

than the model selection [8]

Figure 5: Performance of stratified distribution
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Fault Detection Results

I Considering micro averaged accuracy for each class outcome in
imbalanced classification task

Figure 6: Performance of unbalanced distribution
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Conclusion

I With the extraction of relevant information of faults from Canny edge
detection, summarised as shape/size/area/position of a fault, the
proposed framework is able to work with different machine learning
strategies for classification over markers and tape faults.

I It is concluded that Logistic-Regression and Random-Forests performed
better, in terms of micro aver-aged accuracy and F1 measure.

I For future research, a study on feature extraction algorithms to
understand the fiber alignment and delamination can improve overall
performance and help assess the the material grade.
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Thank you!

Questions?
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