Fault Detection in Uni-directional Tape Production using Image Processing

Somesh Devagekar Dr.Ing. Ahmad Delforouzi , Prof. Dr. Paul G. Plöger

January 10th, 2020

Introduction Motivation and Challenges

Experimental Pipeline UD-Tape dataset and Pre-processing Tape Detection Spot Detection

Conclusion

Introduction

- Quality of unidirectional tapes (UD-Tapes)
 - Production process (temperature and production speed)
- Foresee the end value product

Figure 1: A vision-based thermography system is used to control the quality of a tape production process.

Somesh Devagekar Fault Detection in Uni-directional Tape Production using Image Processing

Motivation

- Efficient quality assessment
- Understanding of local fiber deviations
- 30% reduced scrap rate and decreased production cycle time [1]

Challenges

- Poor quality images
- Changing position of the tape
- Faults appearing in diverse shapes and sizes

Experimental Pipeline

Dataset

- ▶ 450 Thermographic images of the size 768x1024 pixels.
- Changing illumination

Image Pre-processing

- Structural similarity analysis
- Histogram analysis
- Histogram Equalisation

Tape Detection

Grab-Cut ROI

 Create labels and cluster pixels according to their intensity via a Gaussian Mixture Model (GMM) [2]

Faster-RCNN ROI

Faster-RCNN [3] trained on 60 augmented images with a detection accuracy of 95.7%.

Figure 3: Quantitative IoU results for predicted images shows Grab-cut gives averagely better results than Faster-RCNN.

Somesh Devagekar

Image enhancement

- Enhancement using morphological operations such as dilation and erosion
- Linear filter, in convolution with a point structuring element

Feature Descriptors

- Histogram of Oriented Gradients (HOG) [4]
- Features from Accelerated Segment Test (FAST) [5]
- Oriented FAST and Rotated BRIEF (ORB) [6]
- Scale Invariant Feature Transform (SIFT) [4]
- Speed-up Robust Features (SURF) [5]
- Canny edge detection (CANNY) [7]

 Canny edge detection provides the best edge completeness and noise suppression

Feature	Total number	al number Correctly	
descriptor	of detections	f detections detected	
	(TP+FP)	(TP)	(FP)
HOG	14	9	5
FAST-TRUE	254 20		234
FAST-FALSE	1650	20	1630
SIFT	87	17	67
SURF	295	20	275
ORB	318	20	298
CANNY	24	20	4

 $\mathsf{Table}\ 1:$ Quantitative results of feature descriptors to detect the markers and the faults on a tape

Feature Descriptors

- Aspect-Ratio
- Approximate number of sides of a void
- Relative location of a void in the image
- Shape of the void
- Center of mass

Features	Feature 1	Feature 2	Feature 3	Feature N
Aspect-Ratio	1.5	0.3	1.17	
Position	352,692	0,688	212,648	
Shape	Half-circle	NA	Circle	
Approx sides	9	14	17	

Table 2: Features from UD-Tape dataset.

Feature set has two classes as 'marker' and 'non-marker/faults'

Somesh Devagekar

Fault Detection

Machine Learning Techniques

- Support Vector Machines(SVM)
- Decision trees
- K-Nearest Neighbour(K-NN)

- Logistic Regression
- Naive Bayes
- Random forests

Figure 4: UD-Tape data distribution of data over the two classes of markers and tape faults is shown.

Somesh Devagekar Fault Detection in Uni-directional Tape Production using Image Processing

Fault Detection Results

Random forest and logistic regression outperform the other classifiers
Similarity of performance is influenced by the type of dataset rather than the model selection [8]

Somesh Devagekar

 Considering micro averaged accuracy for each class outcome in imbalanced classification task

Figure 6: Performance of unbalanced distribution

- With the extraction of relevant information of faults from Canny edge detection, summarised as shape/size/area/position of a fault, the proposed framework is able to work with different machine learning strategies for classification over markers and tape faults.
- It is concluded that Logistic-Regression and Random-Forests performed better, in terms of micro aver-aged accuracy and F₁ measure.
- For future research, a study on feature extraction algorithms to understand the fiber alignment and delamination can improve overall performance and help assess the the material grade.

Questions?

Somesh Devagekar Fault Detection in Uni-directional Tape Production using Image Processing

15/16

- M. Kropka et al. "From UD-tape to final part-a comprehensive approach towards thermoplastic composites". In: <u>Proceedia CIRP</u> 66 (2017), pp. 96–100.
- [2] X. Y. Wu et al. "An Interactive Video Foreground Segmentation System Based on Modeling and Dynamic Graph Cut Algorithm". In: Advanced Materials Research. Vol. 532. Trans Tech Publ. 2012, pp. 1770–1774.
- [3] S. Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks". In: Advances in neural information processing systems. 2015, pp. 91–99.
- [4] Ş. Öztürk and A Bayram. "Comparison of HOG, MSER, SIFT, FAST, LBP and CANNY features for cell detection in histopathological images". In: HELIX 8.3 (2018), pp. 3321–3325.
- [5] M. El-Gayar, H Soliman, et al. "A comparative study of image low level feature extraction algorithms". In: Egyptian Informatics Journal 14.2 (2013), pp. 175–181.
- [6] A. Amaricai, C.-E. Gavriliu, and O. Boncalo. "An FPGA sliding window-based architecture harris corner detector". In: 2014 24th International Conference on Field Programmable Logic and Applications (FPL). IEEE. 2014, pp. 1–4.
- [7] Machine Vision. http://www.cse.usf.edu/-r1k/MachineVisionBook/MachineVision.files/MachineVision_Chapter5.pdf. Accessed: 18.08.2019.
- [8] A. Wålinder. Evaluation of logistic regression and random forest classification based on prediction accuracy and metadata analysis. 2014.

Somesh Devagekar Fault Detection in Uni-directional Tape Production using Image Processing