Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches

Kalun Ho^{1, 2, 4}, Janis Keuper³, Franz-Josef Pfreundt^{1, 2}, and Margret Keuper⁴

¹Fraunhofer Center Machine Learning, Germany ²Competence Center High Performance Computing, Fraunhofer ITWM, Kaiserslautern, Germany ³Institute for Machine Learning and Analytics (IMLA), Offenburg University, Germany ⁴Data and Web Science Group, University of Mannheim, Germany

Our method has three contributions

Contribution

- Study on two clustering approaches applied on embeddings, learnt from three versions of Triplet Losses
- Simplification of Triplet Loss, which allows to directly compute the probability of two data points for belonging to disjoint components
 - Proposed Triplet Loss outperform previous versions on CIFAR-10 and is robust against noise

Overview

We investigated three versions of Triplet Loss

$$L_{triplet} = \sum_{i=1}^{n} [\|f(x_i^a) - f(x_i^p)\|^2 - \|f(x_i^a) - f(x_i^n\|^2) + \alpha]_+$$

$$L_{triplet_2} = L_{triplet} + [\|f(x_i^a) - f(x_i^p)\|^2 - \beta]_+$$

$$L_{triplet_3} = \sum_{i=1}^{n} \left[\alpha - \|f(x_i^a) - f(x_j^n)\|^2 \right]_{+} + \left[\|f(x_i^a) - f(x_k^p)\|^2 - \beta \right]_{+}$$

Different Intra-cluster Distance make it impossible to learn Threshold

We can derive the Threshold directly from training Parameters

$$L_{triplet} = \sum_{i=1}^{n} [\|f(x_i^a) - f(x_i^p)\|^2 - \|f(x_i^a) - f(x_i^n\|^2) + \alpha]_+$$

$$\begin{split} L_{triplet_2} &= L_{triplet} + [\|f(x_i^a) - f(x_i^p)\|^2 - \beta]_+ \\ L_{triplet_3} &= \sum_{i=1}^n [\alpha - \|f(x_i^a) - f(x_j^n)\|^2]_+ + [\|f(x_i^a) - f(x_k^p)\|^2 - \beta]_+ \end{split}$$

Threshold:
$$\tau = \sqrt{(\alpha + \beta)/2}$$

Clustering Performance with noisy data: KMeans

Clustering Performance with noisy data: Multicut

Clustering Performance: Multicut vs. KMeans

TSNE-Visualization: Multicut-Clustering on CIFAR10

Summary

- Study on two clustering approaches applied on embeddings, learnt from three versions of Triplet Losses
- Simplification of Triplet Loss, which allows to directly compute the probability of two data points for belonging to disjoint components
- Proposed Triplet Loss outperform previous versions on CIFAR-10 and is robust against noise

