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Our method has three contributions

Contribution

B Study on two clustering approaches applied on
embeddings, learnt from three versions of Triplet Losses

mSimplification of Triplet Loss, which allows to directly
compute the probability of two data points for belonging to
disjoint components

Our Method 2

B Proposed Triplet Loss outperform previous versions on
CIFAR-10 and is robust against noise
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Overview

Embedding

Batch of Triplets

Step 1: Training
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Step 2: Graph-based Clustering
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Step 3: Evaluation
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We investigated three versions of Triplet Loss
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Different Intra-cluster Distance make it impossible to learn Threshold
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We can derive the Threshold directly from training Parameters
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Clustering Performance with noisy data: KMeans

Accuracy in %
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Clustering Performance with noisy data: Multicut

Accuracy in %
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Clustering Performance: Multicut vs. KMeans
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TSNE-Visualization: Multicut-Clustering on CIFAR10
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Summary

B Study on two clustering approaches applied on embeddings, learnt from three versions of
Triplet Losses

mSimplification of Triplet Loss, which allows to directly compute the probability of two data points
for belonging to disjoint components

B Proposed Triplet Loss outperform previous versions on CIFAR-10 and is robust against noise
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