### MD-KNN: An Instance-Based Approach for



#### Multi-Dimensional Classification

Bin-Bin Jia

**Min-Ling Zhang** 

School of Computer Science and Engineering

MOE Key Laboratory of Computer Network & Information Integration

Southeast University, China









Milan, Italy

### Multi-Dimensional Classification

#### Traditional Multi-class classification



Only one class variable

### Multi-Dimensional Classification (MDC)



Multiple classvariables









### MDC examples



#### A piece of music











### MDC examples

Dim 1. Genre



#### Widely exist in real-world applications

- Text classification [Ortigosa-Hernandez et al., Neurocomputing12] [Serafino et al., LNAI15] [Tu et al., ACM TIST17]
- Bioinformatics [Read et al., TKDE14] [Fernandez-Gonzalez et al., ICML Workshop'15] [Bolt et al., IJAR17][Benjumeda et al., IJAR18]
- ☐ Computer vision [Ma et al., Neurocomputing18]
- ☐ Resource allocation [Muktadir et al., IEICE TIS19]
- □ Other areas [Tekinerdogan, SoSE'19] [Verma et al. Sci Total Environ21]

III. J. Lone

/inter-continental

#### A news document









#### The Problem



■ Multiple class variables

**Existing works:** adapting parametric learning techniques to deal with MDC problem (e.g., probabilistic graphical model, distance metric learning, maximum margin, etc.).

Our work: make a first attempt to adapt instance-based techniques for MDC, and propose a novel approach named MD-KNN.









# The MD-KNN Approach (1/4)

The workflow of MD-KNN:

- (I). MD-KNN identifies *k* nearest neighbors of unseen instance in training set, and obtains its *k*NN counting statistics w.r.t. each class space.
- (II). For **each pair** of class spaces, **maximum a posteriori** (MAP) inference is made based on the obtained *k*NN counting statistics w.r.t. both class spaces.
- (III). The class label w.r.t. each class space is determined by synergizing predictions from corresponding pairwise class spaces via consulting **empirical** *k*NN **accuracy**.









## The MD-KNN Approach (2/4)

(I). MD-KNN identifies *k* nearest neighbors of unseen instance in training set, and obtains its *k*NN counting statistics w.r.t. each class space.









# The MD-KNN Approach (3/4)

(II). For each pair of class spaces, maximum a posteriori (MAP) inference is made based on the obtained kNN counting statistics w.r.t. both class spaces.

Note1: Consider pairwise class dependencies

Note2: Obtain *q*-1 predicted class labels for each dimension









# The MD-KNN Approach (3/4)

(II). For **each pair** of class spaces, **maximum a posteriori** (MAP) inference is made based on the obtained *k*NN counting statistics w.r.t. both class spaces.

 $\begin{array}{c} \textbf{for} \ r=1 \ \text{to} \ q-1 \ \textbf{do} \quad \% \ q \text{: number of dimensions} \\ \textbf{for} \ s=r+1 \ \text{to} \ q \ \textbf{do} \\ y_{*r}^{rs}, y_{*s}^{rs} \leftarrow \underset{\textbf{arg max}}{\text{arg max}} \ \underbrace{\mathbb{P}\left(c_{s}^{r}, c_{s}^{s} \mid \boldsymbol{\delta^{x_{*}}}, \boldsymbol{\delta^{x_{*}}}\right)}_{\textbf{Cannot be effectively estimated}} \\ \textbf{end for} \\ \textbf{end for} \\ \textbf{end for} \\ \end{array}$ 

Note1: Consider pairwise class dependencies

Note2: Obtain *q*-1 predicted class labels for each dimension









# The MD-KNN Approach (3/4)

(II). For **each pair** of class spaces, **maximum a posteriori** (MAP) inference is made based on the obtained *k*NN counting statistics w.r.t. both class spaces.

for r = 1 to q - 1 do % q: number of dimensions

for s = r + 1 to q do

Train  $g_{rs}$  over  $\mathcal{D}_{rs}^{\text{MAP}}$ , i.e.,  $g_{rs} = \mathcal{M}(\mathcal{D}_{rs}^{\text{MAP}})$   $[y_{*r}^{rs}, y_{*s}^{rs}] = \phi_{rs}^{-1}(g_{rs}(\boldsymbol{x}_{*}^{rs}))$  where  $\boldsymbol{x}_{*}^{rs} = [\boldsymbol{\delta}_{r}^{\boldsymbol{x}_{*}}, \boldsymbol{\delta}_{s}^{\boldsymbol{x}_{*}}]$ 

L end for end for

$$\mathcal{D}_{rs}^{\text{MAP}} = \{ (\boldsymbol{x}_i^{rs}, \phi(y_{ir}, y_{is})) \mid 1 \leq i \leq m \} \text{ and } \boldsymbol{x}_i^{rs} = [\boldsymbol{\delta}_r^{\boldsymbol{x}_i}, \boldsymbol{\delta}_s^{\boldsymbol{x}_i}]$$
  
$$\phi_{rs}(\cdot, \cdot) : C_r \times C_s \to \mathbb{N} \text{ and inverse function: } \phi_{rs}^{-1}(\cdot, \cdot)$$









# The MD-KNN Approach (4/4)

(III). The class label w.r.t. each class space is determined by synergizing predictions from corresponding pairwise class spaces via consulting **empirical** *k*NN **accuracy**.

The q-1 predictions for  $\boldsymbol{x}_*$ 's j-th class space  $(1 \leq j \leq q)$ :

$$\boldsymbol{y}_{j}^{\boldsymbol{x}_{*}} = \left[ y_{j}^{\boldsymbol{x}_{*}}(1), y_{j}^{\boldsymbol{x}_{*}}(2), \dots, y_{j}^{\boldsymbol{x}_{*}}(q-1) \right]^{\top}$$











## The MD-KNN Approach (4/4)

(III). The class label w.r.t. each class space is determined by synergizing predictions from corresponding pairwise class spaces via consulting **empirical** kNN accuracy.

The q-1 predictions for  $\boldsymbol{x}_*$ 's j-th class space  $(1 \leq j \leq q)$ :

$$\boldsymbol{y}_{j}^{\boldsymbol{x}_{*}} = \left[ y_{j}^{\boldsymbol{x}_{*}}(1), y_{j}^{\boldsymbol{x}_{*}}(2), \dots, y_{j}^{\boldsymbol{x}_{*}}(q-1) \right]^{\top}$$

where

Return the one corresponding to the *h* with best accuracy over *x*<sub>\*</sub>'s *k* nearest neighbors

obtained by  $h_{ij}(\cdot) = \phi_{ij}^{-1}(g_{ij}(\cdot))$ obtained by  $h_{j(i+1)}(\cdot) = \phi_{j(i+1)}^{-1}(g_{j(i+1)}(\cdot))$ 









### Experimental Setup

### Experimental data sets

Characteristics of the experimental MDC data sets.

| Data Set     | #Exam. | #Dim. | #Labels/Dim.                 | #Features†       |
|--------------|--------|-------|------------------------------|------------------|
| Flare1       | 323    | 3     | 3,4,2                        | $\overline{10x}$ |
| WaterQuality | 1060   | 14    | 4                            | 16n              |
| Scm20d       | 8966   | 16    | 4                            | 61n              |
| Rf1          | 8987   | 8     | 4,4,3,4,4,3,4,3              | 64n              |
| Thyroid      | 9172   | 7     | 5,5,3,2,4,4,3                | 7n, 22x          |
| Pain         | 9734   | 10    | 2, 5, 4, 2, 2, 5, 2, 5, 2, 2 | 136n             |
| Scm1d        | 9803   | 16    | 4                            | 280n             |
| Disfa        | 13095  | 12    | 5,5,6,3,4,4,5,4,4,4,6,4      | 136n             |
| Fera         | 14052  | 5     | 6                            | 136n             |
| Adult        | 18419  | 4     | 7,7,5,2                      | 5n,5x            |

 $<sup>\</sup>dagger n$ , x denote numeric and nominal features respectively.









### Experimental Setup

#### **Evaluation Metrics**

**Testing set:**  $S = \{(\boldsymbol{x}_i, \boldsymbol{y}_i) \mid 1 \le i \le p\}, \text{ where } \boldsymbol{y}_i = [y_{i1}, y_{i2}, \dots, y_{iq}]^{\top}$ 

Predicted class vector:  $\hat{\boldsymbol{y}}_i = f(\boldsymbol{x}_i) = [\hat{y}_{i1}, \hat{y}_{i2}, \dots, \hat{y}_{iq}]^{\top}$ 

For each MDC test example  $(\boldsymbol{x}_i, \boldsymbol{y}_i): r^{(i)} = \sum_{j=1}^q \llbracket y_{ij} = \hat{y}_{ij} \rrbracket$ 

**Hamming Score:**  $\operatorname{HS}_{\mathcal{S}}(f) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{q} \cdot r^{(i)}$ 

**Exact Match:**  $\mathrm{EM}_{\mathcal{S}}(f) = \frac{1}{p} \sum_{i=1}^{p} \llbracket r^{(i)} = q \rrbracket$ 

Sub-Exact Match:  $SEM_{\mathcal{S}}(f) = \frac{1}{p} \sum_{i=1}^{p} \llbracket r^{(i)} \geq q - 1 \rrbracket$ 









### Experimental Setup

### Compared Algorithms

**BR**: Learn q independent multi-class classifier, one per dimension

**CP**: Learn a single multi-class classifier via powerset transformation

**ECC**: Learn a chain of q multi-class classifier, one per dimension

**ESC**: Group the class variables into groups

**gMML**: Learn a regressor for each class label as well as a Mahalanobis distance metric to train all regressor in a joint manner

### Experimental Protocol

Ten-fold cross-validation + Pairwise *t*-test









### **Experimental Results**

Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between MD-KNN and each MDC approach.

| Evaluation    | Md-knn against |        |        |        |        |  |  |
|---------------|----------------|--------|--------|--------|--------|--|--|
| metric        | BR             | CP     | ECC    | ESC    | gMML   |  |  |
| HS            | 8/1/1          | 4/1/1  | 8/1/1  | 5/1/1  | 8/1/1  |  |  |
| $\mathrm{EM}$ | 8/2/0          | 4/1/1  | 7/3/0  | 4/2/1  | 8/2/0  |  |  |
| SEM           | 6/3/1          | 3/3/0  | 6/3/1  | 4/3/0  | 6/3/1  |  |  |
| In Total      | 22/6/2         | 11/5/2 | 21/7/2 | 13/6/2 | 22/6/2 |  |  |

Detailed experimental results and some further analysis (effectiveness of algorithmic design, sensitivity analysis) can be found in our paper.









# Thanks!

http://palm.seu.edu.cn/zhangml/files/MD-kNN.zip

Email: jiabb@seu.edu.cn







