MD-KNN: An Instance-Based Approach for

Multi-Dimensional Classification

Bin-Bin Jia

Min-Ling Zhang

School of Computer Science and Engineering

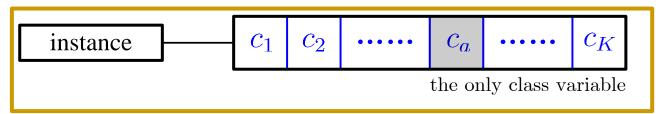
MOE Key Laboratory of Computer Network & Information Integration

Southeast University, China

Milan, Italy

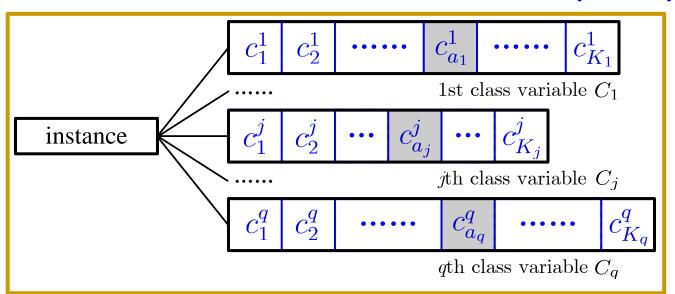
Multi-Dimensional Classification

Traditional Multi-class classification



Only one class variable

Multi-Dimensional Classification (MDC)



Multiple classvariables

MDC examples

A piece of music

MDC examples

Dim 1. Genre

Widely exist in real-world applications

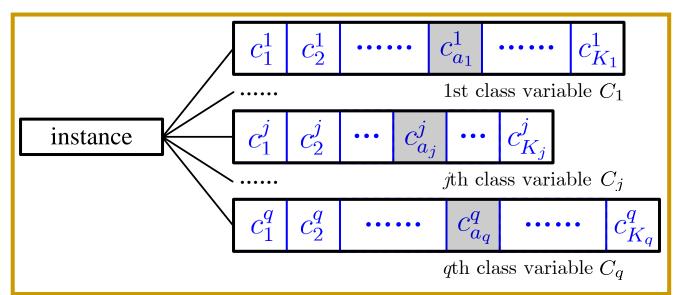
- Text classification [Ortigosa-Hernandez et al., Neurocomputing12] [Serafino et al., LNAI15] [Tu et al., ACM TIST17]
- Bioinformatics [Read et al., TKDE14] [Fernandez-Gonzalez et al., ICML Workshop'15] [Bolt et al., IJAR17][Benjumeda et al., IJAR18]
- ☐ Computer vision [Ma et al., Neurocomputing18]
- ☐ Resource allocation [Muktadir et al., IEICE TIS19]
- □ Other areas [Tekinerdogan, SoSE'19] [Verma et al. Sci Total Environ21]

III. J. Lone

/inter-continental

A news document

The Problem



■ Multiple class variables

Existing works: adapting parametric learning techniques to deal with MDC problem (e.g., probabilistic graphical model, distance metric learning, maximum margin, etc.).

Our work: make a first attempt to adapt instance-based techniques for MDC, and propose a novel approach named MD-KNN.

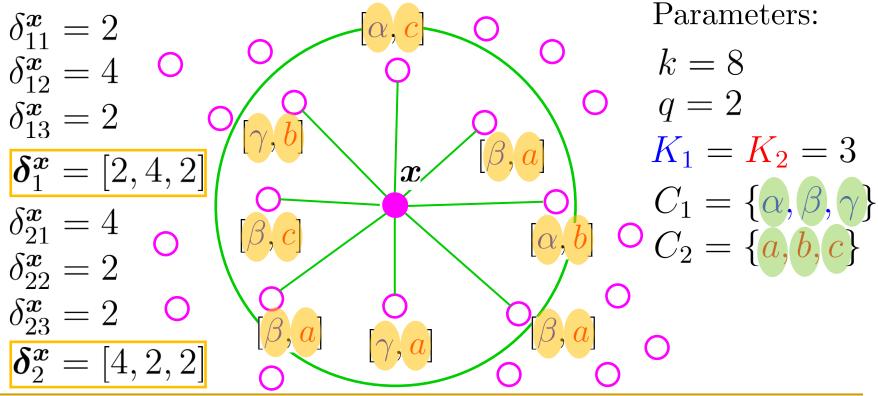
The MD-KNN Approach (1/4)

The workflow of MD-KNN:

- (I). MD-KNN identifies *k* nearest neighbors of unseen instance in training set, and obtains its *k*NN counting statistics w.r.t. each class space.
- (II). For **each pair** of class spaces, **maximum a posteriori** (MAP) inference is made based on the obtained *k*NN counting statistics w.r.t. both class spaces.
- (III). The class label w.r.t. each class space is determined by synergizing predictions from corresponding pairwise class spaces via consulting **empirical** *k*NN **accuracy**.

The MD-KNN Approach (2/4)

(I). MD-KNN identifies *k* nearest neighbors of unseen instance in training set, and obtains its *k*NN counting statistics w.r.t. each class space.



The MD-KNN Approach (3/4)

(II). For each pair of class spaces, maximum a posteriori (MAP) inference is made based on the obtained kNN counting statistics w.r.t. both class spaces.

Note1: Consider pairwise class dependencies

Note2: Obtain *q*-1 predicted class labels for each dimension

The MD-KNN Approach (3/4)

(II). For **each pair** of class spaces, **maximum a posteriori** (MAP) inference is made based on the obtained *k*NN counting statistics w.r.t. both class spaces.

 $\begin{array}{c} \textbf{for} \ r=1 \ \text{to} \ q-1 \ \textbf{do} \quad \% \ q \text{: number of dimensions} \\ \textbf{for} \ s=r+1 \ \text{to} \ q \ \textbf{do} \\ y_{*r}^{rs}, y_{*s}^{rs} \leftarrow \underset{\textbf{arg max}}{\text{arg max}} \ \underbrace{\mathbb{P}\left(c_{s}^{r}, c_{s}^{s} \mid \boldsymbol{\delta^{x_{*}}}, \boldsymbol{\delta^{x_{*}}}\right)}_{\textbf{Cannot be effectively estimated}} \\ \textbf{end for} \\ \textbf{end for} \\ \textbf{end for} \\ \end{array}$

Note1: Consider pairwise class dependencies

Note2: Obtain *q*-1 predicted class labels for each dimension

The MD-KNN Approach (3/4)

(II). For **each pair** of class spaces, **maximum a posteriori** (MAP) inference is made based on the obtained *k*NN counting statistics w.r.t. both class spaces.

for r = 1 to q - 1 do % q: number of dimensions

for s = r + 1 to q do

Train g_{rs} over $\mathcal{D}_{rs}^{\text{MAP}}$, i.e., $g_{rs} = \mathcal{M}(\mathcal{D}_{rs}^{\text{MAP}})$ $[y_{*r}^{rs}, y_{*s}^{rs}] = \phi_{rs}^{-1}(g_{rs}(\boldsymbol{x}_{*}^{rs}))$ where $\boldsymbol{x}_{*}^{rs} = [\boldsymbol{\delta}_{r}^{\boldsymbol{x}_{*}}, \boldsymbol{\delta}_{s}^{\boldsymbol{x}_{*}}]$

L end for end for

$$\mathcal{D}_{rs}^{\text{MAP}} = \{ (\boldsymbol{x}_i^{rs}, \phi(y_{ir}, y_{is})) \mid 1 \leq i \leq m \} \text{ and } \boldsymbol{x}_i^{rs} = [\boldsymbol{\delta}_r^{\boldsymbol{x}_i}, \boldsymbol{\delta}_s^{\boldsymbol{x}_i}]$$

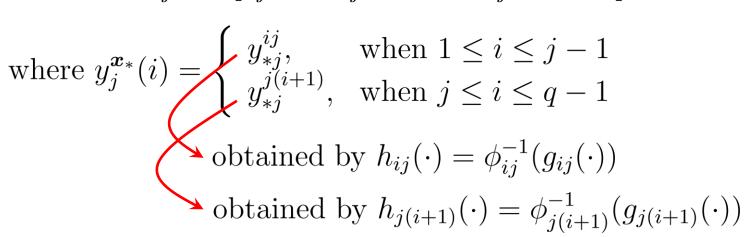
$$\phi_{rs}(\cdot, \cdot) : C_r \times C_s \to \mathbb{N} \text{ and inverse function: } \phi_{rs}^{-1}(\cdot, \cdot)$$

The MD-KNN Approach (4/4)

(III). The class label w.r.t. each class space is determined by synergizing predictions from corresponding pairwise class spaces via consulting **empirical** *k*NN **accuracy**.

The q-1 predictions for \boldsymbol{x}_* 's j-th class space $(1 \leq j \leq q)$:

$$\boldsymbol{y}_{j}^{\boldsymbol{x}_{*}} = \left[y_{j}^{\boldsymbol{x}_{*}}(1), y_{j}^{\boldsymbol{x}_{*}}(2), \dots, y_{j}^{\boldsymbol{x}_{*}}(q-1) \right]^{\top}$$



The MD-KNN Approach (4/4)

(III). The class label w.r.t. each class space is determined by synergizing predictions from corresponding pairwise class spaces via consulting **empirical** kNN accuracy.

The q-1 predictions for \boldsymbol{x}_* 's j-th class space $(1 \leq j \leq q)$:

$$\boldsymbol{y}_{j}^{\boldsymbol{x}_{*}} = \left[y_{j}^{\boldsymbol{x}_{*}}(1), y_{j}^{\boldsymbol{x}_{*}}(2), \dots, y_{j}^{\boldsymbol{x}_{*}}(q-1) \right]^{\top}$$

where

Return the one corresponding to the *h* with best accuracy over *x*_{*}'s *k* nearest neighbors

obtained by $h_{ij}(\cdot) = \phi_{ij}^{-1}(g_{ij}(\cdot))$ obtained by $h_{j(i+1)}(\cdot) = \phi_{j(i+1)}^{-1}(g_{j(i+1)}(\cdot))$

Experimental Setup

Experimental data sets

Characteristics of the experimental MDC data sets.

Data Set	#Exam.	#Dim.	#Labels/Dim.	#Features†
Flare1	323	3	3,4,2	$\overline{10x}$
WaterQuality	1060	14	4	16n
Scm20d	8966	16	4	61n
Rf1	8987	8	4,4,3,4,4,3,4,3	64n
Thyroid	9172	7	5,5,3,2,4,4,3	7n, 22x
Pain	9734	10	2, 5, 4, 2, 2, 5, 2, 5, 2, 2	136n
Scm1d	9803	16	4	280n
Disfa	13095	12	5,5,6,3,4,4,5,4,4,4,6,4	136n
Fera	14052	5	6	136n
Adult	18419	4	7,7,5,2	5n,5x

 $[\]dagger n$, x denote numeric and nominal features respectively.

Experimental Setup

Evaluation Metrics

Testing set: $S = \{(\boldsymbol{x}_i, \boldsymbol{y}_i) \mid 1 \le i \le p\}, \text{ where } \boldsymbol{y}_i = [y_{i1}, y_{i2}, \dots, y_{iq}]^{\top}$

Predicted class vector: $\hat{\boldsymbol{y}}_i = f(\boldsymbol{x}_i) = [\hat{y}_{i1}, \hat{y}_{i2}, \dots, \hat{y}_{iq}]^{\top}$

For each MDC test example $(\boldsymbol{x}_i, \boldsymbol{y}_i): r^{(i)} = \sum_{j=1}^q \llbracket y_{ij} = \hat{y}_{ij} \rrbracket$

Hamming Score: $\operatorname{HS}_{\mathcal{S}}(f) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{q} \cdot r^{(i)}$

Exact Match: $\mathrm{EM}_{\mathcal{S}}(f) = \frac{1}{p} \sum_{i=1}^{p} \llbracket r^{(i)} = q \rrbracket$

Sub-Exact Match: $SEM_{\mathcal{S}}(f) = \frac{1}{p} \sum_{i=1}^{p} \llbracket r^{(i)} \geq q - 1 \rrbracket$

Experimental Setup

Compared Algorithms

BR: Learn q independent multi-class classifier, one per dimension

CP: Learn a single multi-class classifier via powerset transformation

ECC: Learn a chain of q multi-class classifier, one per dimension

ESC: Group the class variables into groups

gMML: Learn a regressor for each class label as well as a Mahalanobis distance metric to train all regressor in a joint manner

Experimental Protocol

Ten-fold cross-validation + Pairwise *t*-test

Experimental Results

Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between MD-KNN and each MDC approach.

Evaluation	Md-knn against						
metric	BR	CP	ECC	ESC	gMML		
HS	8/1/1	4/1/1	8/1/1	5/1/1	8/1/1		
EM	8/2/0	4/1/1	7/3/0	4/2/1	8/2/0		
SEM	6/3/1	3/3/0	6/3/1	4/3/0	6/3/1		
In Total	22/6/2	11/5/2	21/7/2	13/6/2	22/6/2		

Detailed experimental results and some further analysis (effectiveness of algorithmic design, sensitivity analysis) can be found in our paper.

Thanks!

http://palm.seu.edu.cn/zhangml/files/MD-kNN.zip

Email: jiabb@seu.edu.cn

