Deep Reinforcement Learning on a Budget 3D Control and reasoning without a supercomputer ICPR 2020

Webpage: https://edbeeching.github.io/papers/3d control deep rl

Edward Beeching

Jilles Dibangoye

Olivier Simonin

Christian Wolf

Introduction

• We provide challenging scenarios for Deep Reinforcement Learning agents in partially observable 3D environments.

This work:

- Extends the ViZDoom simulator with 4 new scenarios
- Trains and evaluates a recurrent Deep RL agent to identify its limitations and areas for improvement
- Evaluates the generalization performance in unseen environment configurations.

Our scenarios:

- Act as a proxy to real world environments
- Test reasoning, memory, generalization and planning in complex
 3D environments.
- Provide a standard benchmark for Deep RL algorithms that can be trained in under 24 hours

Motivation

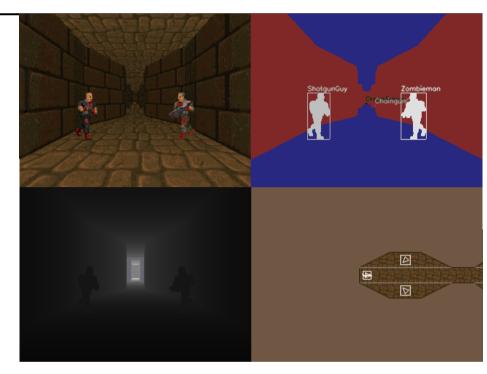
- ViZDoom (Wydmuch et al., 2016)
 - Highly optimized software
 - Runs at 100x real time on modern computers
 - Mature set of tools for the creation of new scenarios
 - Includes some simple scenarios

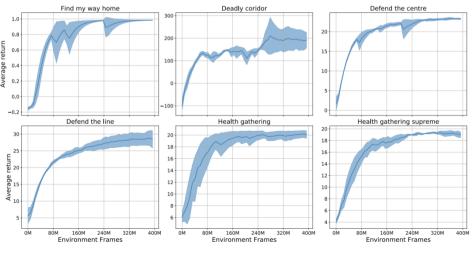
Lacks:

- Challenging scenarios
- Scenarios that test generalization in unseen environments

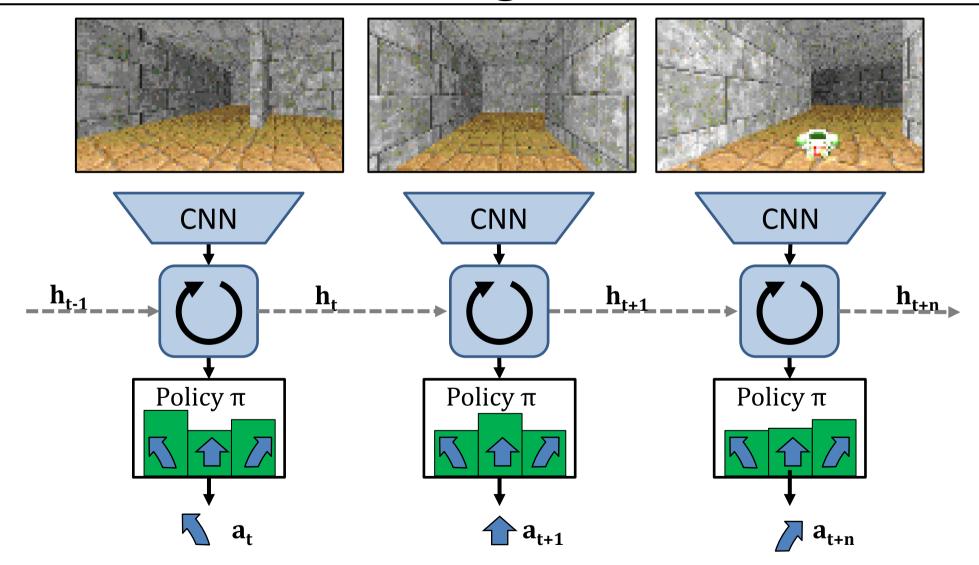
• Our aim:

- To create a set of memory based tasks that can act as proxies for real world robotic navigation and planning problems.
- Evaluate the performance of Deep RL agents



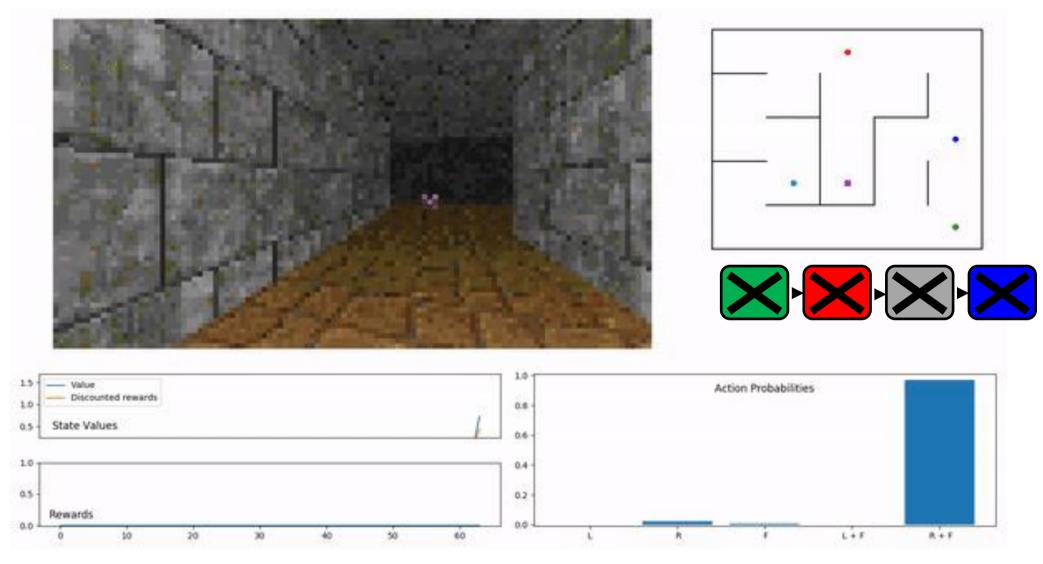


Benchmark recurrent agent architecture

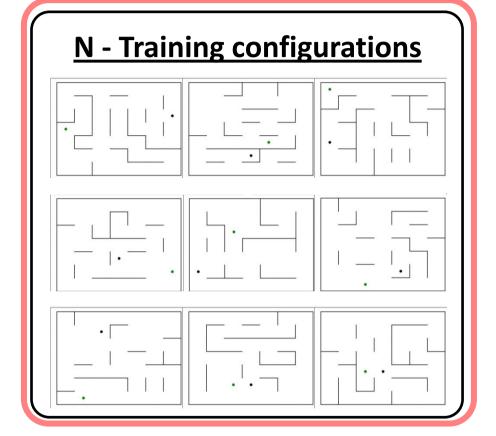


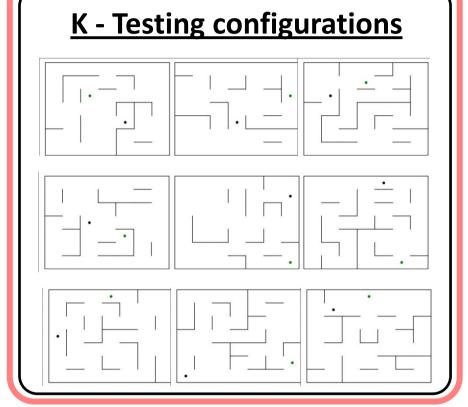
Example task: K-item scenario

Example task: K-item scenario



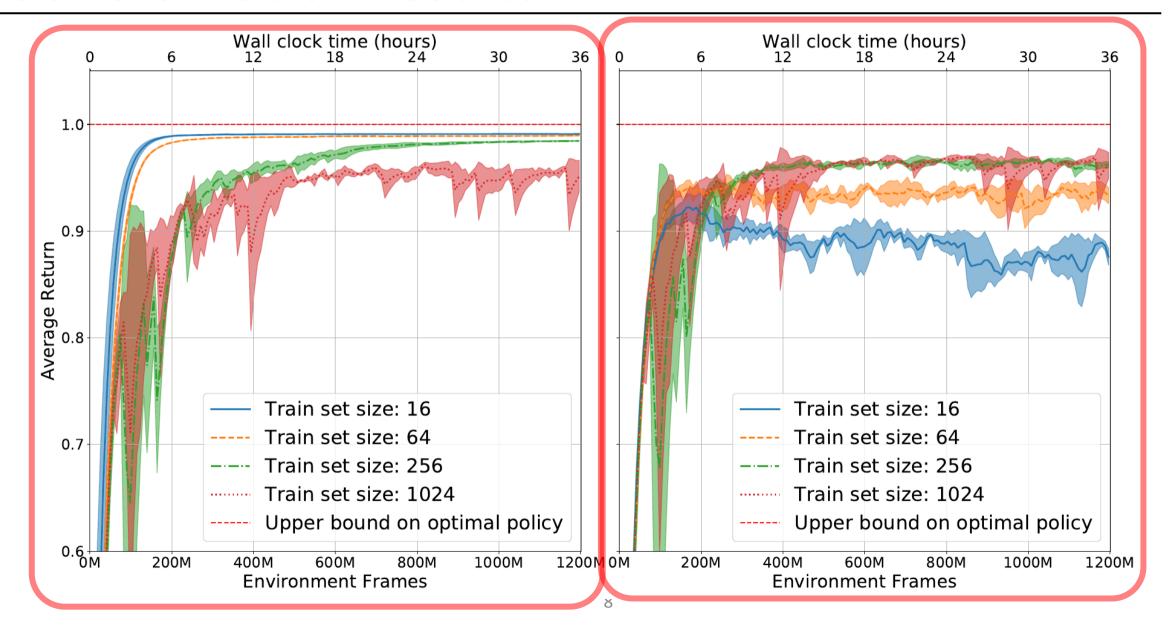
Generalization





How many training configurations are required to generalize to unseen test configurations?

Generalization results

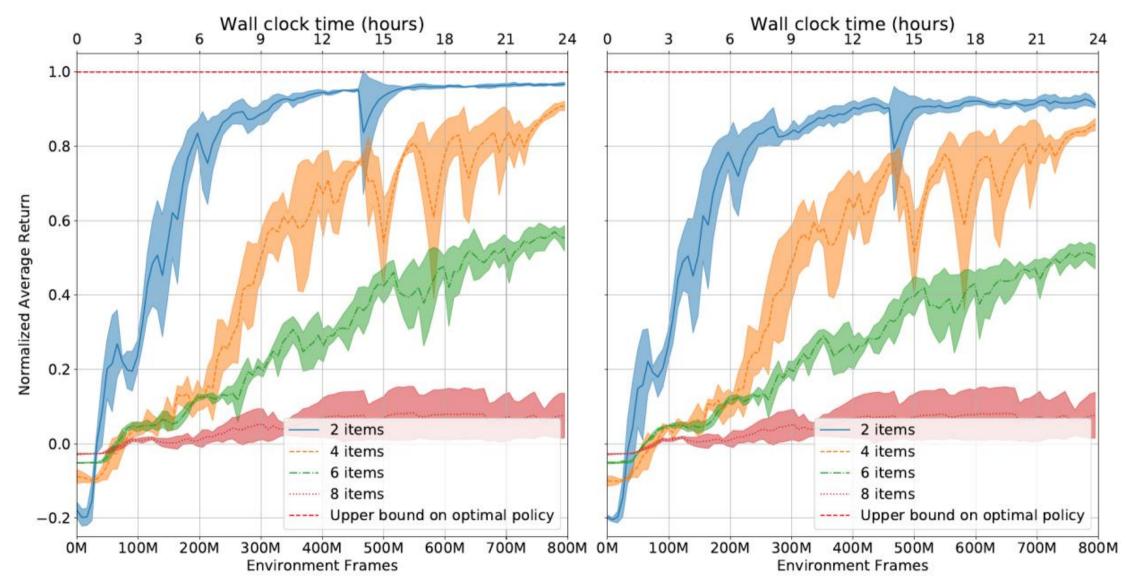


Results

Labyrinth			Ordered K-item		
Size	Train	Test	# items	Train	Test
7	99.8 ± 0.2	99.5 ± 0.2	2	0.968 ± 0.004	0.932 ± 0.012
9	98.1 ± 0.8	97.4 ± 1.3	4	0.910 ± 0.012	0.861 ± 0.015
11	95.2 ± 0.7	90.1 ± 1.0	6	0.577 ± 0.024	0.522 ± 0.023
13	84.1 ± 1.8	79.8 ± 1.9	8	0.084 ± 0.071	0.083 ± 0.070

Find Return			Two colors		
Size	Train	Test	Complexity	Train	Test
7	98.7 ± 0.3	95.1 ± 0.2	1	1903 ± 27	1941 ± 4
9	87.0 ± 1.9	81.6 ± 1.8	3	1789 ± 24	1781 ± 24
11	70.9 ± 1.6	64.0 ± 1.6	5	1436 ± 158	1432 ± 161
13	57.7 ± 0.8	52.9 ± 3.7	7	1159 ± 126	1128 ± 140

Results: K-item



This work

 We provide challenging scenarios for Deep Reinforcement Learning agents in partially observable 3D environments.

• This work:

- Extends the ViZDoom simulator with 4 new scenarios
- Trains and evaluates a recurrent Deep RL agent to identify its limitations and areas for improvement
- Evaluates the generalization performance in unseen environment configurations.

Our scenarios:

- Act as a proxy to real world environments
- Test reasoning, memory, generalization and planning in complex
 3D environments.
- Provide a standard benchmark for Deep RL algorithms that can be trained in under 24 hours



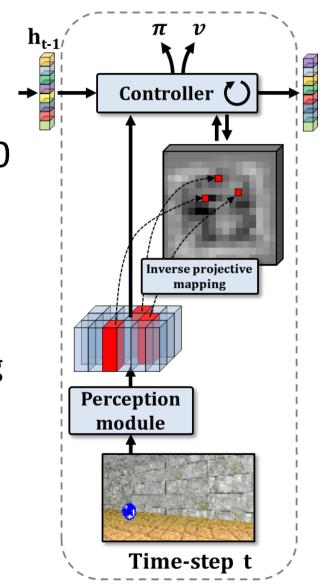
Extensions

EgoMap: Projective mapping and structured egocentric memory for Deep RL. ECML-PKDD 2020

Extends recurrent baselines with structured memory

Incorporates differentiable inverse projective mapping

Outperforms recent metric map methods



Deep Reinforcement Learning on a Budget 3D Control and reasoning without a supercomputer ICPR 2020

Webpage: https://edbeeching.github.io/papers/3d control deep rl

See you in the poster session!

Edward Beeching

Jilles Dibangoye

Olivier Simonin

Christian Wolf

