

ResFPN: Residual Skip Connections in Multi-Resolution Feature Pyramid Networks for Accurate Dense Pixel Matching

Rishav, René Schuster, Ramy Battrawy, Oliver Wasenmüller, Didier Stricker

ICPR 2020

Paper ID 48

Features Extraction in Computer Vision Tasks

- Basic cues for all computer vision tasks
- Robust features \rightarrow robust results
- Even more important for dense pixel-wise matching tasks
- Multi-scale feature extraction popular for dense problems

Dense Pixel Matching

Image Source: Google

Image Pyramids

Feature Pyramid

Feature Pyramid Networks [1]

[1] T.-Y. Lin et. al, Feature pyramid networks for object detection. In Conference on Computer Vision and Pattern Recognition (CVPR) 2017.

Residual connections from higher resolution maps

Residual connections from higher resolution maps (Ablation)

	h	Re-shaping	Merging	FT3D >3px	[2] EPE	KITTI >3px	[[3] EPE	$\begin{array}{c} \text{Parameters} \\ \times 10^6 \end{array}$	$\substack{\text{FLOPs}\\\times10^{12}}$
FPN [1]	0	-	addition	21.49	9.15	12.55	3.22	8.05	6.07
	1	1×1 , max-pool	addition	20.95	8.28	11.37	3.09	8.09	6.50
	2	max-pool	concatenation	19.90	7.91	11.21	3.04	8.67	8.94
	2	1×1 , max-pool	concatenation	21.16	8.34	11.83	3.02	9.03	12.09
	2	3×3 , stride	addition	21.65	8.42	13.67	3.50	8.74	7.43
	2	1×1 , bi-linear	addition	20.89	8.09	11.55	3.21	8.12	7.26
	2	max-pool, 1×1	addition	20.28	7.67	12.24	3.06	8.12	6.24
ResFPN	2	1×1 , max-pool	addition	18.91	7.19	10.63	2.98	8.12	7.30

[1] T.-Y. Lin et. al, Feature pyramid networks for object detection. In Conference on Computer Vision and Pattern Recognition (CVPR) 2017.

[2] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[3] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Final Connection Strategy

Quantitative Results (Improvement Over Baseline)

[1] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[2] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[3] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. In Conference on Computer Vision and Pattern Recognition (CVPR), 2018. [4] Rohan Saxena, René Schuster, Oliver Wasenmüller, and Didier Stricker. PWOC-3D: Deep occlusion-aware end-to-end scene flow estimation. In Intelligent Vehicles Symposium (IV), 2019.

[5] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[6] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source movie for optical flow evaluation. In European Conference on Computer Vision (ECCV), 2012.

[7] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[1] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[1] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[2] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. In Conference on Computer Vision and Pattern Recognition (CVPR), 2018

Summary

- ResFPN when used as a feature extractor improves results for several state-of-theart algorithms on diverse data sets
- Higher resolution maps provide improved localization
- ResFPN is a general concept

Thank You!