

2D License Plate Recognition based on Automatic Perspective Rectification

Hui Xu^{1,2}, Zhao-Hong Guo^{1,2}, Da-Han Wang³, Xiang-Dong Zhou¹, Yu Shi¹

¹Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences

²Chongqing School, University of Chinese Academy of Sciences

³Xiamen University of Technology, China

Introduction

License Plate Recognition(LPR)

- The plates in the images are likely to be distorted due to shooting angles, which directly affect the recognition of license number.
- License plates(LPs) include many kinds, varying in background color, length of numbers and character arrangement. The diversity of Chinese LPs is a challenge to LPR. The numbers consists of Latin letters, digit and Chinese characters.

Motivations

Existing LPR methods

(a) Character-based

(b) RNN-based

Existing LPR methods can be roughly categorized into two groups: character-based and RNN-based.

- Character-based methods relies on character segmentation, which is unreliable to illumination, pose and noise in the image.
- RNN-based methods can only recognize plates with no or minimal deformations.

Motivations

Existing Irregular text recognition methods

- A text rectification module is always designed for irregular text recognition. However, the universal text rectification methods are designed for various irregular text, which can not achieve good effectiveness in LPR.
- LPs can **only produce perspective deformation** in the image due to its rigid body property.

✓ we propose a novel method consisting of a novel perspective rectification network (PRN) and a location-aware 2D attention based recognition network for the LPR task.

Proposed Method

- Perspective rectification network (PRN) estimates the perspective transformation of an input LP image automatically and generates the rectified LP image.
- **2D attention based recognition network** identify both single-line and double line LPs with 2D attention mechanism.

Proposed Method

♦ Perspective rectification network (PRN)

PRN includes two steps: perspective transformation prediction and grid sampling.

TABLE I
ARCHITECTURE OF PERSPECTIVE RECTIFICATION NETWORK

Layer Name	Configurations	Size
Input	-	$1 \times 32 \times 100$
Convolution	c:64, k:3 \times 3, s:1 \times 1, pad:1	$64 \times 32 \times 100$
MaxPooling	$k:2 \times 2, s:2 \times 2$	$64 \times 16 \times 50$
Convolution	c:128,k:3 \times 3, s:1 \times 1, pad:1	$128 \times 16 \times 50$
MaxPooling	$k:2 \times 2, s:2 \times 2$	$128 \times 8 \times 25$
Convolution	c:256,k:3 × 3, s:1 × 1, pad:1	$256 \times 8 \times 25$
MaxPooling	$k:2 \times 2, s:2 \times 2$	$256 \times 4 \times 12$
Convolution	c:512,k:3 \times 3, s:1 \times 1, pad:1	$512 \times 4 \times 12$
AvgPooling	$k:2 \times 2, s:2 \times 2$	$512 \times 1 \times 1$
fc1	256	256
fc2	9	9

c,k,s,pad represent channel,kernel, stride and padding sizes respectively.

- Perspective transformation prediction:
- The rectification network directly predicts an offset matrix $\mathbf{T}_{\mathbf{p}}$, and the perspective transformation \mathbf{T} is calculated.
- **Grid sampling**: The sampling grid is generated by **T** and properties of perspective transformation.

Proposed Method

2D attention based recognition network

- 2D attention mechanism is adopted to predict license numbers sequence directly from the 2D feature maps.
- the one-hot encoding of the simplified spatial coordinates is used to make α_t sensitive to single-line or double-line.

$$r_{j} = \begin{cases} 1, & single - line \\ \left[\frac{j}{2} + 0.5\right], & double - line \end{cases}$$

$$H = W_{h}h_{i,j} + W_{s}s_{t-1} + W_{i}f_{i} + W_{r_{j}}f_{r_{j}} + b$$

$$\alpha_{t,i,j} = \frac{exp(e_{t,i,j})}{\sum_{i,j}(exp(e_{t,i,j}))}$$

$$H = W_h h_{i,j} + W_s s_{t-1} + W_i f_i + W_{r_j} f_{r_j} + b \label{eq:hamiltonian}$$

$$\alpha_{t,i,j} = \frac{exp(e_{t,i,j})}{\sum_{i,j}(exp(e_{t,i,j}))}$$

Experiments

Datasets

- Synthetic data are generated randomly with various brightness, chroma, clarity and angles of view.
- **CLPD** dataset contains about 260,000 Chinese single-line LPs collected from different security and surveillance cameras
- **CCPD** is collected in the parking lot of Hefei province of China.
- **DLTD** is a private double-line plates dataset collected from surveillance cameras of traffic crossroads.
- **SYSU-ITS** dataset is a public LP image set, which is provided by OpenITS.

Experiments

◆ Rectification module

- The ablation study is carried out to validate the performance gain of the rectification component.
- The rectified LP images of different rectification methods are shown to validate the visualization performance of PRN.

TABLE II
PERFORMANCE OF RECTIFICATION MODULE

Rectification	Recognition	CLPD	T-CCPD
NULL	2D-Attn	98.12%	72.72%
TPS[10]		98.33%	80.78%
MORN[11]		98.22%	74.27%
PRN (ours)		98.5%	82.2%

Fig. 4. Rectified images generated by different methods.

Experiments

♦ Recognition module

Input	Method	Rectified Image	Attention Output	Prediction
(A 0.J201	Baseline	A OJZO	ADJEB	A0J2D1
	2d-Attn	-	** + + + + +	苏A0J201
皖A0J201	Ours	# 0750 I	10 Sto A	皖A0J201
916	Baseline	MA 72746	A 22740	豫AZ2 <mark>2</mark> 4G
KA.ZZZ	2d-Attn	<u> </u>	## A . 7.9.7.44	1AZ2Z4G
皖AZ2Z46	Ours	EA ZZZ46	₩A-Z2Z46	皖AZ2Z46
92290	Baseline	92290	92290	92290
	2d-Attn	3 -	92290	新A922 <mark>2</mark> 90
新A92290	90 Ours 92290 9229	92290	新A92290	
HEHE	Baseline	DAHA	HAHA	НАНА
	2d-Attn	3.00	러듯법통	НЕНЕНАНА
HAHA	Ours	컴토터토	HEHE	НЕНЕНАНА

- The recognition module performs well on both single-line and double-line plates.
- The overall model is improved by the perspective rectification module and location-aware attention.

TABLE III
PERFORMANCE OF RECOGNITION MODULE, WHERE RECT. REPRESENTS RECTIFICATION MODULE.

Rect.	Recognition	CLPD	T-CCPD	D-SYSU
-	1D-Attn [10]	97.4%	59.7%	87.72%
	2D-Attn [34]	98.12%	72.72%	93.8%
LPRNet[8]		97.3%	67.41%	-
Yu [18]		94.5%	68.4%	89.1%
Baseline [10]		97.71%	79.26%	90.4%
Ours		98.7%	83.1%	94.2%

Conclusions

◆ We have proposed a novel 2D license plate recognition method based on automatically perspective rectification for LPR.

◆ We have improved the recognition performance of the license plates with heavy deformations in the images.

◆ In the future work, the LP detection and the model efficiency are the pivotal research.

THANK YOU!