A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata Tobia Tesan¹, Pasquale Coscia² and Lamberto Ballan² ¹ Quantexa Ltd, London, UK ² University of Padova, Department of Mathematics, Italy Visual Intelligence and Machine Perception (VIMP) Group ## Image annotation - Process of labelling images using text or annotation tools. - Some images might be hard to recognize without additional context. - Weakly-annotated images may help to disambiguate the visual classification task. ## **Image annotation** • Metadata of images shared on social-media are an ideal source of additional information. #### **Metadata Limitations** - Image metadata are useful but can be: - noisy - highly subjective - Models should also be robust to vocabulary changes. $vocabulary = [dog, cat, \dots cute, laptop, \textbf{beard}]$ # Our approach - Advanced semantic mapping and CNN-RNN fusion schemes. - Visual features and metadata to jointly leverage context and visual cues. - State-of-the-art results on the multi-label image annotation task using the NUS-WIDE dataset. - Our models decrease both sensory and semantic gaps to better annotate images. #### Visual models vs Joint Models # **Metadata Encoding** #### **Visual Models** ### **Joint Models** ## **Joint Models** # **Dataset & Metrics** - NUS-WIDE dataset: - o 269,648 images collected from Flickr; - o 81 labels (manual annotation); - o 5000 most frequent tags. - Metrics: - Per-label/per-image mean Average Precision (mAP); - Precision and recall. | | lmage | Label | Metadata (tags) | | | | |-------------------|------------------------------------|---------------------------------|---|--|--|--| | Image: 163792 | September 1 | grass | centipede, yellow, naturesfinest, k100d, macro, pentax, kit, eyes, animals, grass, chenille, nature, 1855, johannpix, caterpillar | | | | | | flickrdiamond, animalkingdomelite, | | | | | | | Neighbour: 140470 | | animal | dragonfly, naturesfinest*, k100d*, macro*, pentax*, wild, kit*, animals*, blue, damselfly, green, nature*, bluerib-bonwinner, 1855*, diamondclassphotographer, closeup, johannpix*, libellule | | | | | Neighbour: 140175 | | sun, sky,
flowers,
clouds | yellow*, naturesfinest*, k100d*,
pentax*, flash, soe, kit*, outdoors,
overtheshot, 1855*, colors, sun, flowers,
johannpix*, sky, tulips, fillin | | | | | Neighbour: 15106 | | animal | yellow*, macro*, 5hits, selectivecolorization, animals*, selectivecolor, bird, nature*, chicken, chick, beak, baby, bw | | | | NUS-WIDE dataset # **Experimental Results (1/4)** Our best results in comparison to several baselines and SOTA models. | Method | mAP_{lab} | mAP_{img} | rec_{lab} | $prec_{lab}$ | $ \operatorname{rec}_{img} $ | $\operatorname{prec}_{img}$ | |---|--------------------|--------------------|------------------|------------------|------------------------------|-----------------------------| | Tag-only Model + linear SVM [7] | 46.67 | # 1 | : | - | ·=: | | | Graphical Model (all metadata) [7] | 49.00 | - | 8 | - | - | - | | CNN + WARP [16] | - | | 35.60 | 31.65 | 60.49 | 48.59 | | CNN-RNN [21] | - | - | 30.40 | 40.50 | 61.70 | 49.90 | | SR-RNN [22] | - | - | 50.17 ★ | 55.65 ★ | 71.35 * | 70.57 * | | SR-RNN + Vecs [22] † | - | - | 58.52 * | 63.51 * | 77.33 * | 76.21 * | | SRN [35] | 60.00 | 80.60 | 41.50 * | 70.40 * | 58.70 * | 81.10 ★ | | MangoNet [33] | 62.80 | 80.80 | 41.00 * | 73.90 * | 59.90 * | 80.60 * | | LTN [2] | 52.78 ± 0.34 | 80.34 ± 0.07 | 43.61 ± 0.47 | 46.98 ± 1.01 | 74.72 ± 0.16 | 53.69 ± 0.13 | | LTN + Vecs [2] † | 61.88 ± 0.36 | 80.27 ±0.08 | 57.30 ± 0.44 | 54.74 ± 0.63 | 75.10 ± 0.20 | 53.46 ± 0.09 | | Upper bound | 100.00 ±0.00 | 100.00 ± 0.00 | 65.82 ± 0.35 | 60.68 ± 1.32 | 92.09 ± 0.10 | 66.83 ± 0.12 | | Our baseline: v-only | 45.05 ± 0.11 | 76.88 ± 0.11 | 42.31 ± 0.59 | 43.74 ± 1.07 | 71.41 ± 0.13 | 51.36 ± 0.13 | | Our baseline: LTN _{n:id} | 53.17 ± 0.12 | 79.82 ± 0.16 | 45.67 ± 1.75 | 47.64 ± 2.18 | 74.29 ± 0.13 | 53.34 ± 0.17 | | Our baseline: LTN + Vecs _{n:id,f:id} † | 54.86 ± 0.20 | 81.34 ± 0.15 | 46.56 ± 1.39 | 50.10 ± 1.70 | 75.67 ± 0.17 | 54.37 ± 0.14 | | Our model: RTN _{n:w2v} | 55.36 ± 0.34 | 79.77 ± 0.27 | 48.73 ± 2.77 | 51.21 ± 2.61 | 74.35 ± 0.29 | 53.28 ± 0.24 | | Our model: LTwin _{n:w2v,f:w2v} † | 63.13 ±0.31 | 83.77 ±0.06 | 54.40 ± 1.33 | 51.86 ± 1.58 | 78.06 ± 0.05 | 55.78 ± 0.13 | # **Experimental Results (2/4)** • mAP_{lab} and mAP_{img} for visual models. # **Experimental Results (3/4)** ullet mAP $_{lab}$ and mAP $_{img}$ for joint models (word2vec embeddings). # **Experimental Results (4/4)** • mAP_{lab} and mAP_{img} for joint models (wordNet embeddings). DAY 2 – January 13, 2021 Poster Session (PS) T3.6