A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

Tobia Tesan1, Pasquale Coscia2 and Lamberto Ballan2

1Quantexa Ltd, London, UK
2University of Padova, Department of Mathematics, Italy
Visual Intelligence and Machine Perception (VIMP) Group
Image annotation

- Process of labelling images using text or annotation tools.
- Some images might be hard to recognize without additional context.
- Weakly-annotated images may help to disambiguate the visual classification task.
Image annotation

- Metadata of images shared on social-media are an ideal source of additional information.

DSCN9999233.JPG

Taken: May 30 2015, 9:15

Tags: 叶子, 树, 微距摄影

Exploring Tag: 叶子
Metadata Limitations

- Image metadata are useful but can be:
 - noisy
 - highly subjective

- Models should also be robust to vocabulary changes.

vocabulary = [dog, cat, ... cute, laptop]

vocabulary = [dog, cat, ... cute, laptop, beard]
Our approach

- Advanced semantic mapping and CNN-RNN fusion schemes.
- Visual features and metadata to jointly leverage context and visual cues.
- State-of-the-art results on the multi-label image annotation task using the NUS-WIDE dataset.
- Our models decrease both sensory and semantic gaps to better annotate images.

Context (tags) + Visual Cues
Visual models vs Joint Models
Metadata Encoding

One-hot Encoding

\[o_x = \sum_{i \text{ s.t. } t_i \in \{t_1, t_2, \ldots, t_n\}} e_i^x \]

Semantic-aware Encoding

Word2vec

WordNet

\[\rho(o_x; \beta) = \sum_{i=1}^{\tau} o_{x(i)} \cdot \beta(t_{(i)}) \]
Visual Models

Visual only

LTN

RTN
Joint Models

LTN+Vecs

LTN+AllVecs

LTwin
Joint Models

LTN+Vecs

LTN+AllVecs

LTwin

LTwin+RNN

LTwin+2RNN

LZip
Dataset & Metrics

- **NUS-WIDE dataset:**
 - 269,648 images collected from Flickr;
 - 81 labels (manual annotation);
 - 5000 most frequent tags.

- **Metrics:**
 - Per-label/per-image mean Average Precision (mAP);
 - Precision and recall.

<table>
<thead>
<tr>
<th>Image</th>
<th>Label</th>
<th>Metadata (tags)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image: 163792</td>
<td>grass</td>
<td>centipede, yellow, naturesfinest, k100d, macro, pentax, kit, eyes, animals, grass, chenille, nature, 1855, johannpix, caterpillar</td>
</tr>
<tr>
<td>Neighbour: 140470</td>
<td>animal</td>
<td>flickrdiamond, animalkingdomelite, dragonfly, naturesfinest, k100d, macro, pentax, wild, kit, animals, blue, damselfly, green, nature, blueribbonwinner, 1855, diamondclassphotographer, closeup, johannpix, libellule</td>
</tr>
<tr>
<td>Neighbour: 140175</td>
<td>sun, sky, flowers, clouds</td>
<td>yellow, naturesfinest, k100d, pentax, flash, see, kit, outdoors, overtheshot, 1855, colors, sun, flowers, johannpix, sky, tulips, fillin</td>
</tr>
<tr>
<td>Neighbour: 15106</td>
<td>animal</td>
<td>yellow, macro, 5hits, selectivecolorization, animals, selectivecolor, bird, nature, chicken, chick, beak, baby, bw</td>
</tr>
</tbody>
</table>
Experimental Results (1/4)

- Our best results in comparison to several baselines and SOTA models.

<table>
<thead>
<tr>
<th>Method</th>
<th>mAP$_{lab}$</th>
<th>mAP$_{img}$</th>
<th>rec$_{lab}$</th>
<th>prec$_{lab}$</th>
<th>rec$_{img}$</th>
<th>prec$_{img}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag-only Model + linear SVM [7]</td>
<td>46.67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Graphical Model (all metadata) [7]</td>
<td>49.00</td>
<td>-</td>
<td>35.60</td>
<td>31.65</td>
<td>60.49</td>
<td>48.59</td>
</tr>
<tr>
<td>CNN + WARP [16]</td>
<td>-</td>
<td>-</td>
<td>30.40</td>
<td>40.50</td>
<td>61.70</td>
<td>49.90</td>
</tr>
<tr>
<td>CNN-RNN [21]</td>
<td>-</td>
<td>-</td>
<td>50.17 *</td>
<td>55.65 *</td>
<td>71.35 *</td>
<td>70.57 *</td>
</tr>
<tr>
<td>SR-RNN [22]</td>
<td>-</td>
<td>-</td>
<td>58.52 *</td>
<td>63.51 *</td>
<td>77.33 *</td>
<td>76.21 *</td>
</tr>
<tr>
<td>SR-RNN + Vecs [22] †</td>
<td>-</td>
<td>-</td>
<td>60.00</td>
<td>80.60</td>
<td>41.50 *</td>
<td>70.40 *</td>
</tr>
<tr>
<td>SRN [35]</td>
<td>60.00</td>
<td>80.60</td>
<td>58.70 *</td>
<td>81.10 *</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MangoNet [33]</td>
<td>62.80</td>
<td>80.80</td>
<td>59.90 *</td>
<td>80.60 *</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LTN [2]</td>
<td>52.78 ±0.34</td>
<td>80.34 ±0.07</td>
<td>43.61 ±0.47</td>
<td>46.98 ±1.01</td>
<td>74.72 ±0.16</td>
<td>53.69 ±0.13</td>
</tr>
<tr>
<td>LTN + Vecs [2] †</td>
<td>61.88 ±0.36</td>
<td>80.27 ±0.08</td>
<td>57.30 ±0.44</td>
<td>54.74 ±0.63</td>
<td>75.10 ±0.20</td>
<td>53.46 ±0.09</td>
</tr>
<tr>
<td>Upper bound</td>
<td>100.00 ±0.00</td>
<td>100.00 ±0.00</td>
<td>65.82 ±0.35</td>
<td>60.68 ±1.32</td>
<td>92.09 ±0.10</td>
<td>66.83 ±0.12</td>
</tr>
<tr>
<td>Our baseline: v-only</td>
<td>45.05 ±0.11</td>
<td>76.88 ±0.11</td>
<td>42.31 ±0.59</td>
<td>43.74 ±1.07</td>
<td>71.41 ±0.13</td>
<td>51.36 ±0.13</td>
</tr>
<tr>
<td>Our baseline: LTN$_{n:id}$</td>
<td>53.17 ±0.12</td>
<td>79.82 ±0.16</td>
<td>45.67 ±1.75</td>
<td>47.64 ±2.18</td>
<td>74.29 ±0.13</td>
<td>53.34 ±0.17</td>
</tr>
<tr>
<td>Our baseline: LTN + Vecs$_{n:id,f:id}$ †</td>
<td>54.86 ±0.20</td>
<td>81.34 ±0.15</td>
<td>46.56 ±1.39</td>
<td>50.10 ±1.70</td>
<td>75.67 ±0.17</td>
<td>54.37 ±0.14</td>
</tr>
<tr>
<td>Our model: RTN$_{n:w2v}$</td>
<td>55.36 ±0.34</td>
<td>79.77 ±0.27</td>
<td>48.73 ±2.77</td>
<td>51.21 ±2.61</td>
<td>74.35 ±0.29</td>
<td>53.28 ±0.24</td>
</tr>
<tr>
<td>Our model: LTwin$_{n:w2v,f:w2v}$ †</td>
<td>63.13 ±0.31</td>
<td>83.77 ±0.06</td>
<td>54.40 ±1.33</td>
<td>51.86 ±1.58</td>
<td>78.06 ±0.05</td>
<td>55.78 ±0.13</td>
</tr>
</tbody>
</table>
Experimental Results (2/4)

- mAP_{lab} and mAP_{img} for visual models.
Experimental Results (3/4)

- mAP_{lab} and mAP_{img} for joint models (word2vec embeddings).
Experimental Results (4/4)

- mAP_{lab} and mAP_{img} for joint models (wordNet embeddings).
Thank You!

3