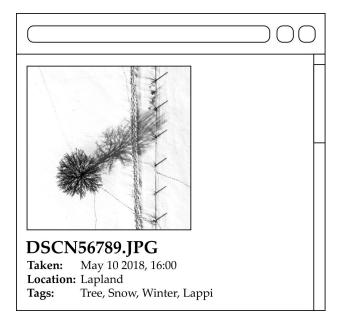


A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

Tobia Tesan¹, Pasquale Coscia² and Lamberto Ballan²


¹ Quantexa Ltd, London, UK

² University of Padova, Department of Mathematics, Italy Visual Intelligence and Machine Perception (VIMP) Group


Image annotation

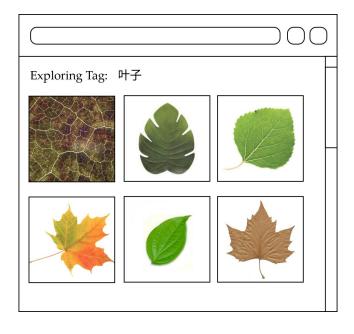
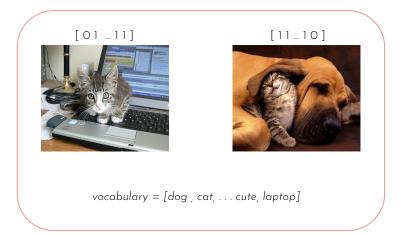
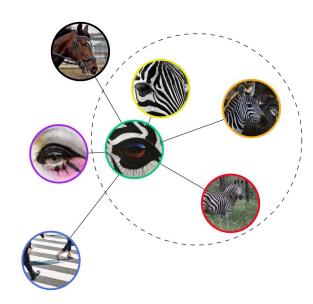

- Process of labelling images using text or annotation tools.
- Some images might be hard to recognize without additional context.
- Weakly-annotated images may help to disambiguate the visual classification task.

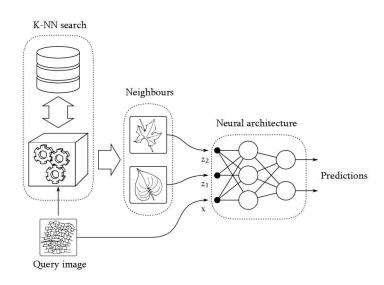
Image annotation

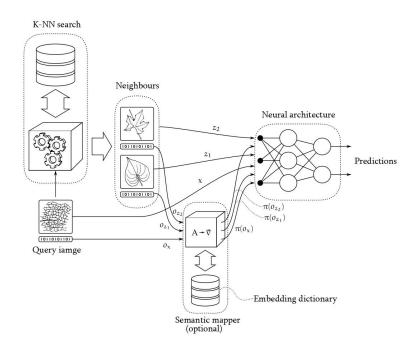

• Metadata of images shared on social-media are an ideal source of additional information.

Metadata Limitations

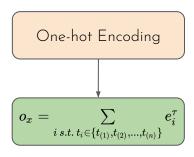
- Image metadata are useful but can be:
 - noisy
 - highly subjective
- Models should also be robust to vocabulary changes.

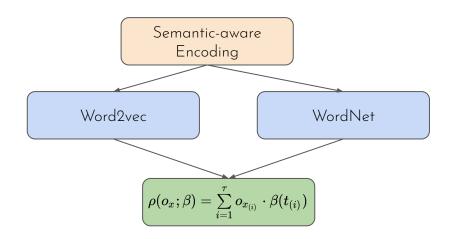


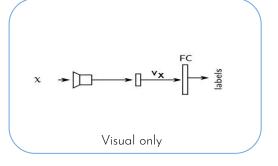

 $vocabulary = [dog, cat, \dots cute, laptop, \textbf{beard}]$

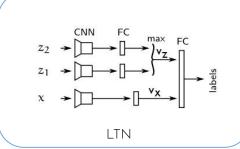

Our approach

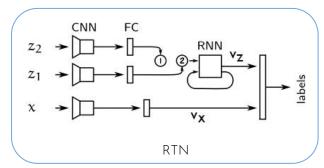
- Advanced semantic mapping and CNN-RNN fusion schemes.
- Visual features and metadata to jointly leverage context and visual cues.
- State-of-the-art results on the multi-label image annotation task using the NUS-WIDE dataset.
- Our models decrease both sensory and semantic gaps to better annotate images.

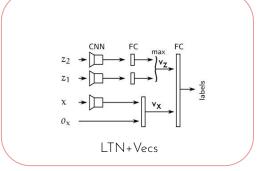


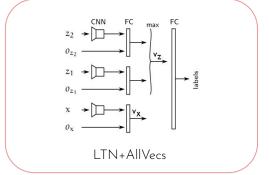

Visual models vs Joint Models

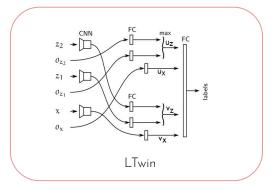


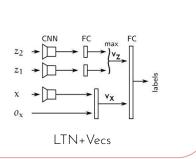

Metadata Encoding

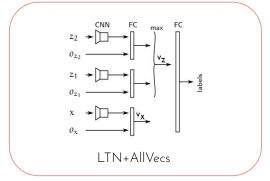


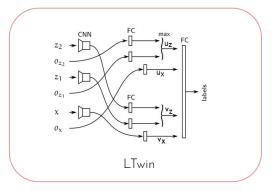

Visual Models

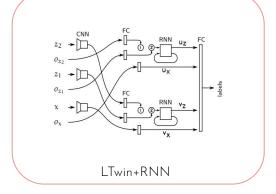


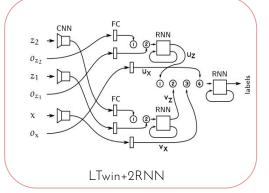


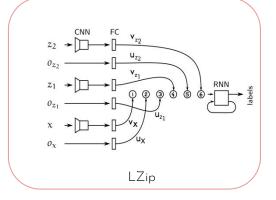

Joint Models








Joint Models



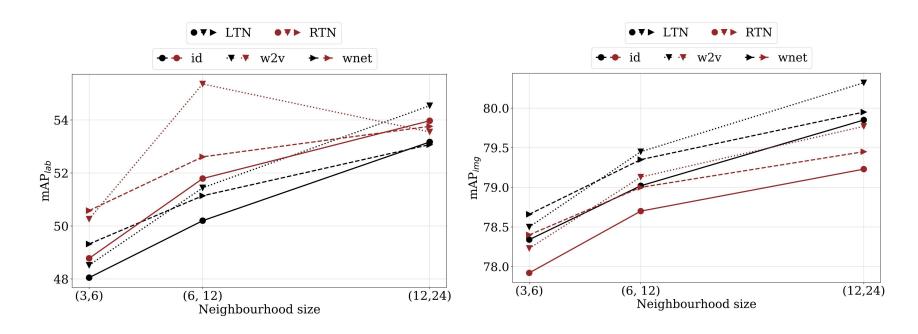
Dataset & Metrics

- NUS-WIDE dataset:
 - o 269,648 images collected from Flickr;
 - o 81 labels (manual annotation);
 - o 5000 most frequent tags.

- Metrics:
 - Per-label/per-image mean Average Precision (mAP);
 - Precision and recall.

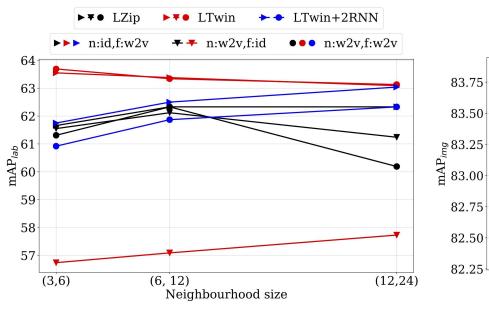
	lmage	Label	Metadata (tags)			
Image: 163792	September 1	grass	centipede, yellow, naturesfinest, k100d, macro, pentax, kit, eyes, animals, grass, chenille, nature, 1855, johannpix, caterpillar			
	flickrdiamond, animalkingdomelite,					
Neighbour: 140470		animal	dragonfly, naturesfinest*, k100d*, macro*, pentax*, wild, kit*, animals*, blue, damselfly, green, nature*, bluerib-bonwinner, 1855*, diamondclassphotographer, closeup, johannpix*, libellule			
Neighbour: 140175		sun, sky, flowers, clouds	yellow*, naturesfinest*, k100d*, pentax*, flash, soe, kit*, outdoors, overtheshot, 1855*, colors, sun, flowers, johannpix*, sky, tulips, fillin			
Neighbour: 15106		animal	yellow*, macro*, 5hits, selectivecolorization, animals*, selectivecolor, bird, nature*, chicken, chick, beak, baby, bw			

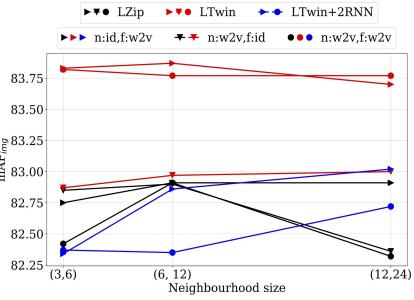
NUS-WIDE dataset


Experimental Results (1/4)

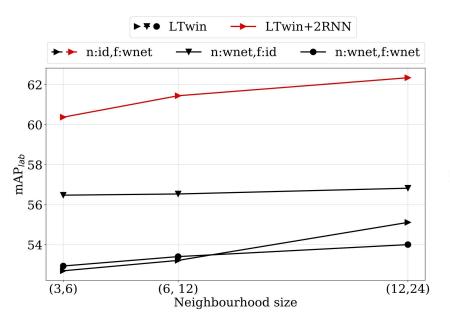
Our best results in comparison to several baselines and SOTA models.

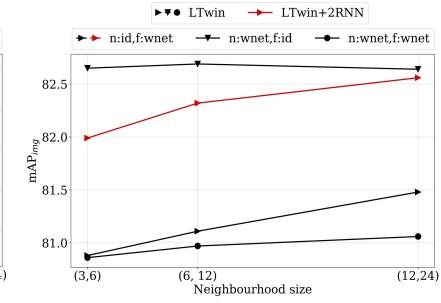
Method	mAP_{lab}	mAP_{img}	rec_{lab}	$prec_{lab}$	$ \operatorname{rec}_{img} $	$\operatorname{prec}_{img}$
Tag-only Model + linear SVM [7]	46.67	# 1	 :	-	·=:	
Graphical Model (all metadata) [7]	49.00	-	8	-	-	-
CNN + WARP [16]	-		35.60	31.65	60.49	48.59
CNN-RNN [21]	-	-	30.40	40.50	61.70	49.90
SR-RNN [22]	-	-	50.17 ★	55.65 ★	71.35 *	70.57 *
SR-RNN + Vecs [22] †	-	-	58.52 *	63.51 *	77.33 *	76.21 *
SRN [35]	60.00	80.60	41.50 *	70.40 *	58.70 *	81.10 ★
MangoNet [33]	62.80	80.80	41.00 *	73.90 *	59.90 *	80.60 *
LTN [2]	52.78 ± 0.34	80.34 ± 0.07	43.61 ± 0.47	46.98 ± 1.01	74.72 ± 0.16	53.69 ± 0.13
LTN + Vecs [2] †	61.88 ± 0.36	80.27 ±0.08	57.30 ± 0.44	54.74 ± 0.63	75.10 ± 0.20	53.46 ± 0.09
Upper bound	100.00 ±0.00	100.00 ± 0.00	65.82 ± 0.35	60.68 ± 1.32	92.09 ± 0.10	66.83 ± 0.12
Our baseline: v-only	45.05 ± 0.11	76.88 ± 0.11	42.31 ± 0.59	43.74 ± 1.07	71.41 ± 0.13	51.36 ± 0.13
Our baseline: LTN _{n:id}	53.17 ± 0.12	79.82 ± 0.16	45.67 ± 1.75	47.64 ± 2.18	74.29 ± 0.13	53.34 ± 0.17
Our baseline: LTN + Vecs _{n:id,f:id} †	54.86 ± 0.20	81.34 ± 0.15	46.56 ± 1.39	50.10 ± 1.70	75.67 ± 0.17	54.37 ± 0.14
Our model: RTN _{n:w2v}	55.36 ± 0.34	79.77 ± 0.27	48.73 ± 2.77	51.21 ± 2.61	74.35 ± 0.29	53.28 ± 0.24
Our model: LTwin _{n:w2v,f:w2v} †	63.13 ±0.31	83.77 ±0.06	54.40 ± 1.33	51.86 ± 1.58	78.06 ± 0.05	55.78 ± 0.13


Experimental Results (2/4)

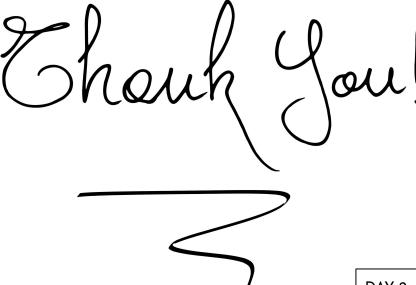

• mAP_{lab} and mAP_{img} for visual models.

Experimental Results (3/4)


ullet mAP $_{lab}$ and mAP $_{img}$ for joint models (word2vec embeddings).



Experimental Results (4/4)


• mAP_{lab} and mAP_{img} for joint models (wordNet embeddings).

DAY 2 – January 13, 2021 Poster Session (PS) T3.6

