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Background

l Burden of CNNs
l Computationally demanding and 

memory intensive 
l Burden to be deployed on the 

hardware devices

Conv1Input Conv2 Conv3 FC Output

l Benefit of filter pruning
l Reduces the FLOPs and storage 

usage
l Accelerates the CNNs inference
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Background

Conv1Input Conv2 Conv3 FC Output

Conv1Input Conv2 Conv3 FC Output

Filter pruning Compress and accelerate the CNNs
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Background

l The majority of pruning approaches prune networks by defining the 
important filters or training the networks with a sparsity prior loss.

l However, these pruning methods cannot prune a network while respecting 
a actual budget on the target hardware, such as latency, power or energy. 

l These works adopt hardware-agnostic metrics such as floating-point 
operations (FLOPs) to estimate the CNNs’ efficiency.

models Hardware

FLOPs

Inference latency
Power
Memory footprint
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Hardware-aware Filter Pruning

l We propose a hardware-aware filter pruning (HFP) method which can 
directly control the latency of pruned networks on the hardware platform. 

l In our method, we propose a greedy pruning criterion based on information 
gain to evaluate the filter importance, which efficiently simplifies the 
pruning optimization problem.

l We propose the Opti-Trim pruning framework, which can decrease the 
accuracy degradation of pruning process and accelerate the pruning 
procedure.
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Problem formulation

l For classification task, to minimize the accuracy drop while meeting the 
budget of latency on hardware, we define the pruning problem as:

where 𝐿VW is cross-entropy loss, LAT(·) evaluates the actual latency of pruned 
network consumed on the hardware, and Bud is the budget about latency.
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Greedily pruning via information gain
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l The information gain (IG) of filter quantifies 
the influence of filter removal on class 
probability distribution of network output

l The more information gain of a certain filter, 
the more information is gained by this filter.

l Filters with the minimum IG carry little 
information, whose removal will not incur 
much information loss.
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Opti-Trim pruning framework

l To decrease the accuracy degradation of pruning 
process and accelerate the pruning procedure, we 
proposed Opti-Trim pruning framework.
l Opti phase: fine-tune the pruned network using L1 

group regularization and compute the IG of filters

l Trim phase: prune filters, achieve the budget on 
hardware and tighten the resource constraint

l The Opti and Trim phase alternately work m times.
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Experiment on VGG-16
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Fig.1. Number of filters at each layer of pruned VGG-16 on CIFAR-10.
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Experiment on ResNet

Fig.2. Comparison with MIL [37], PFEC [14], SFP [16], FPGM [6] and uniform baselines varying different FLOPs reduction rates on CIFAR-10.
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Thank you for your attention!


