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e Burden of CNNs
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e Benefit of filter pruning
Reduces the FLOPs and storage

usage

Accelerates the CNNs inference
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Filter pruning @ Compress and accelerate the CNNs
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e The majority of pruning approaches prune networks by defining the
important filters or training the networks with a sparsity prior loss.

e However, these pruning methods cannot prune a network while respecting
a actual budget on the target hardware, such as latency, power or energy.

e These works adopt hardware-agnostic metrics such as floating-point
operations (FLOPs) to estimate the CNNs’ efficiency.

models Hardware

Inference latency
Power
Memory footprint
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e We propose a hardware-aware filter pruning (HFP) method which can
directly control the latency of pruned networks on the hardware platform.

e In our method, we propose a greedy pruning criterion based on information
gain to evaluate the filter importance, which efficiently simplifies the
pruning optimization problem.

e We propose the Opti-Trim pruning framework, which can decrease the
accuracy degradation of pruning process and accelerate the pruning
procedure.
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e For classification task, to minimize the accuracy drop while meeting the
budget of latency on hardware, we define the pruning problem as:

k* = arg mkin[,CE(Y, P(Y|X7 91;*_))
(1)
s.t. LAT(#.) < Bud,

where L. is cross-entropy loss, LAT(-) evaluates the actual latency of pruned
network consumed on the hardware, and Bud is the budget about latency.
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Prune a filter

with minimum IG e The information gain (IG) of filter quantifies
T the influence of filter removal on class
: probability distribution of network output

P(Y|X)

————— |
L = an =
< o o
© - 5 . . . .
- _.° e The more information gain of a certain filter,
= Distribution . . . . ]
u 3 changed the more information is gained by this filter.

—— 5 @ 5 : : .. .
Prunca filter | 5 § £ e Filters with the minimum IG carry little
with maximum IG . . . .
o Unpruned Pruned information, whose removal will not incur
P ComveFe-Softmax network output network output much information loss.
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Opti-Trim pruning framework

e To decrease the accuracy degradation of pruning
process and accelerate the pruning procedure, we
proposed Opti-Trim pruning framework.

e Opti phase: fine-tune the pruned network using L1
group regularization and compute the IG of filters
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Algorithm 1: Algorithm Description of HFP

Input: Pre-trained network: ©; Desired budget: Bud,

Iteration number: m; Training set: {X,Y'}

Output: Pruned network: 6"

/* Initialization * /
1 Build up a lookup table on the target hardware;
2 Obtain the base latency B;
3 Obtain A = (B — Bud)/m;

/* Opti-Trim pruning framework */

4 for i € [0,m] do

e Trim phase: prune filters, achieve the budget on

5

hardware and tighten the resource constraint 6
e The Opti and Trim phase alternately work m times. .
8

[Trim]:

tighten

9
10

Prune filters to
meet the budget

constraint

loop for

m times 11

[Opti]:

/* Opti phase */
foreach {x,y}c{X,Y} do
Fine-tune the remaining filters in the network
via Eq. (9);
Calculate the IG of filter via Eq. (6) or Eq. (7);
end

/* Trim phase */
repeat
Prune a filter with the minimum IG across all
layers;

Obtain the current latency LAT(6;") of pruned
network via Eq. (8);

Pre_trzinled N | Bl*ll(lld L::pba| Fine—tune model Pruge(lj 12 until LAT(H;:) <B-—ix% A;
mode OOKUp tabie mode
P and compute |G 13 end
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Experiment on VGG-16

TABLE 1 600

RESULTS OF PRUNING VGG-16 oN CIFAR-10 500

§ 400

Uniform Baselines HFP E 0o
Ratio  Accuracy Latency Accuracy Latency 2 0
1x 93.73% 1.68ms - - 100
0.75% 92.80% 1.45ms 93.93 % 1.25ms 0

1 2 3 4 5 6 7 8 9 10 11 12 13

0.5X% 91.89% 0.78ms 93.36 % 0.81ms Layer number
O 25 % 89 06% 0 42ms 91 04% O 45ms VGG-16 1x (314.16M FLOPs) M HFP 0.75x (243.4M FLOPs)

HFP 0.5x (81.08M FLOPs) M HFP 0.25x (30.64M FLOPs)

Fig.1. Number of filters at each layer of pruned VGG-16 on CIFAR-10.
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Experiment on ResNet
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(a) Results of pruning ResNet-32
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(b) Results of pruning ResNet-56
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(c) Results of pruning ResNet-110

Fig.2. Comparison with MIL [37], PFEC [14], SFP [16], FPGM [6] and uniform baselines varying different FLOPs reduction rates on CIFAR-10.
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Thank you for your attention!
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