Generating Private Data Surrogates for Vision Tasks

Ryan Webster Julien Rabin

Loic Simon Frederic Jurie

rwebstr@gmail.com

Privacy in Generative Models

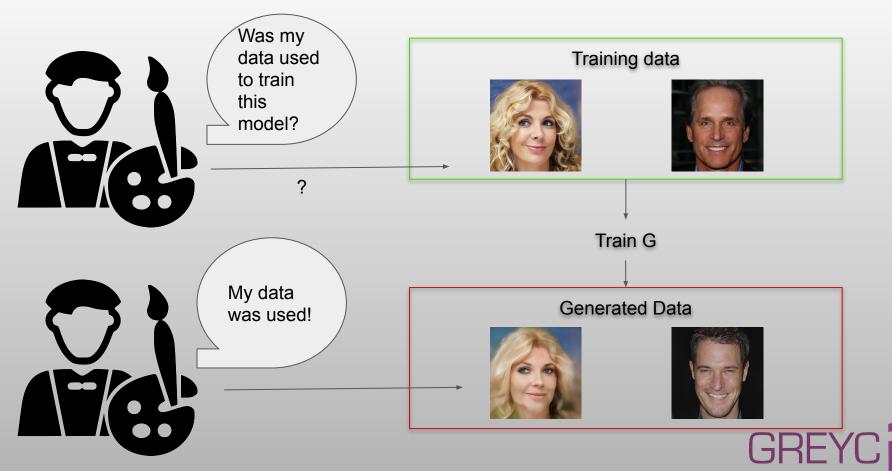
- Deep networks can contain information about their training data.
- Membership attacks involve discerning which samples were used given a model.
- Recently, several successful attacks have been demonstrated against generative models.
- GANs appear to be resistant to such attacks. In this work, we utilize
 this observation to create surrogate data, giving privacy for other
 tasks (such as classification).

Example of Privacy in Image Generation

- In the medical domain, a publicly released model could be used to determine which patients records were used during training.
- Generative models have particular interest in the artistic domain. An artist may be able to discern if his work was used to train a model.

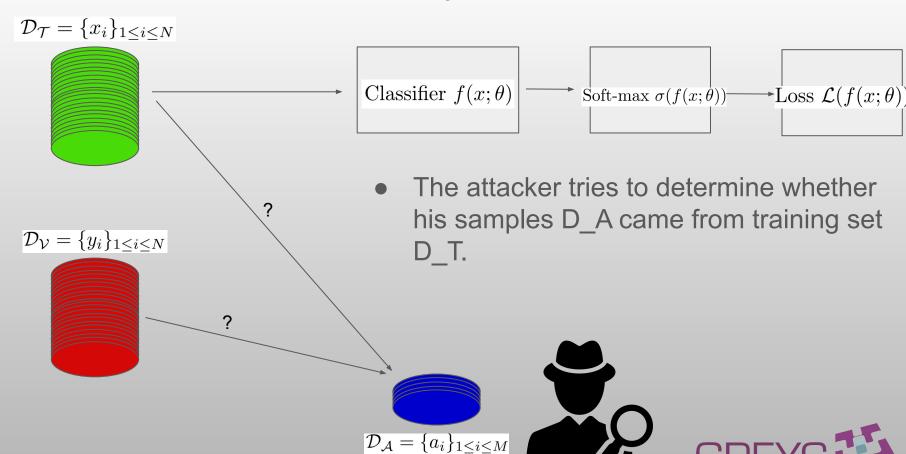
 This may be a problem if the model was trained without copyright permission.

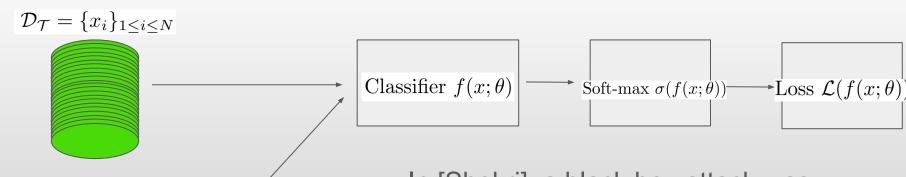
Example of Generative Privacy: Copyright



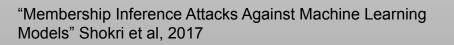
- 1. Membership attacks
 - a. General description
 - b. Attacks against generative models
 - i. Discriminative Attacks
 - ii. Recovery Attacks
- 2. Creating Data Surrogates with GANs
- 3. Results

- An attacker holds some data suspected to have been used to train a model. They posses samples D_A, which is comprised of samples from both the training set D_T, and validation set D_V. He may have some knowledge about the model.
- In a whitebox attack, the attacker has access the model parameters θ, in a blackbox attack, they only have access to the model outputs f(x; θ).

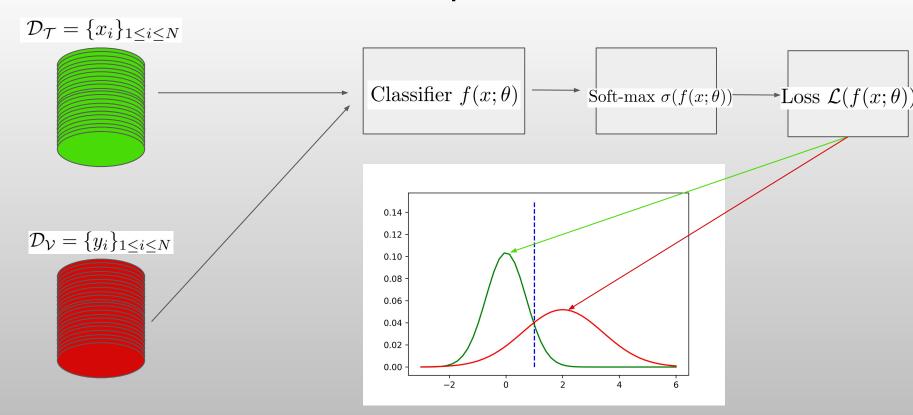




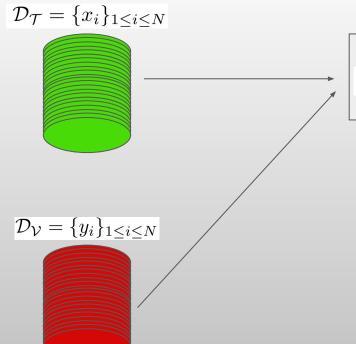
 In [Shokri], a black box attack was demonstrated to be highly successful, by sorting the outputs.

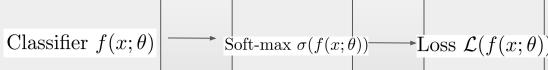


 $\mathcal{D}_{\mathcal{V}} = \{y_i\}_{1 \le i \le N}$



"Membership Inference Attacks Against Machine Learning Models" Shokri et al, 2017





Note: Differential Privacy

- Differential privacy is a mathematical framework [Dwork et al] which can make it impossible to determine any information about training specific training examples.
- Unfortunately, synthesis with low epsilon has not been demonstrated.

Membership attacks: Generic Algorithm

Algorithm 1 Membership attack

Input: Training set $\mathcal{D}_{\mathcal{T}}$, validation set $\mathcal{D}_{\mathcal{V}}$

- 1: Set the attack score function A, either from the recovery loss function in Eq. (1) or the discriminator D.
- 2: Let $x_i \in \mathcal{D}_{\mathcal{T}} \cup \mathcal{D}_{\mathcal{V}}$, such that

$$\begin{cases} x_i \in \mathcal{D}_{\mathcal{T}} & \text{if } i \leq N \\ x_i \in \mathcal{D}_{\mathcal{V}} & \text{if } N+1 \leq i \leq 2N \end{cases}$$

3: Sorted indices: $I \leftarrow \arg \operatorname{sort}\{A(x_i)\}_{1 \leq i \leq 2N}$

Output:

- 4: Estimated set of training images: $\mathcal{T} \leftarrow \{x_{I(i)}\}_{1 \le i \le N}$
- 5: Membership attack accuracy:

$$Acc \leftarrow |I \cap \{i : 1 \le i \le N\}|/N$$

Membership Attacks Against Generative Models

Generative Adversarial Networks (GAN)

$$\max_{D} \min_{G} \mathbb{E}_{z \sim \mathcal{N}(0,1), x \sim p_{data}} [log(D(x)) + log(1 - D(G(z)))]$$

Generative Latent Optimization (GLO)

$$\min_{G} \sum_{(z_i, x_i)} \mathcal{L}_{rec}(G(z_i), x_i) = \|G(z_i) - x_i\|_2^2$$

- How do we attack a generative model, when there is no obvious attack function, only a generator?
- LOGAN (Hayes et al, 2019), shows moderate success just using the discriminator, but this is unrealistic, as the discriminator is usually discarded after training.
- What about in a more realistic scenario, when we only have the generator?

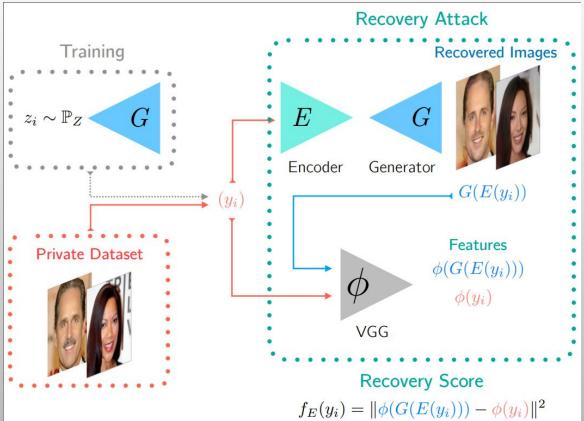
Discriminator Attacks

- In LOGAN [Hayes et al], the discriminator is used as the attack function.
- This assumes access to discriminator parameters, which is unlikely as the discriminator is not used in most application settings.

Recovery Attacks

- In [Webster et al.], a recovery attack was highly effective against some generative models.
- Recovery attacks work by solving an inverse problem for the generator and directly generate certain samples.
- In this work, we introduced encoder based recovery attacks.
- Encoder parameters are used to invert images into latent codes. The resulting recovery error is used as the attack function, like in [Webster et al].

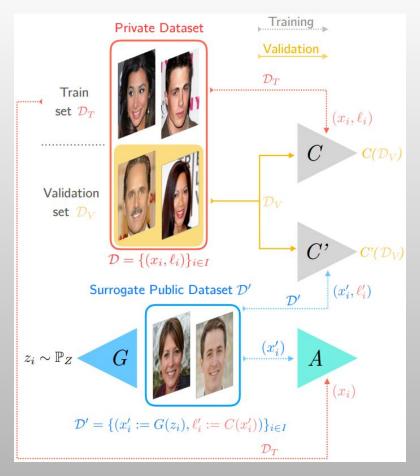
Recovery Attacks



Generated Private Data Surrogates

- In [Webster et al.], recent GANs (such as Progressive GAN), was shown to be resistant to membership attacks.
- We build on this observation and explore the use of generated data in lieu of real data.
- Generated surrogates are empirically resistant to membership attacks, while having similar performance.

Generated Private Data Surrogates



Results

- We measure the drop in performance when using surrogate data, alongside FID.
- More realistic generated data results in better classification.

			Gender	Smiling	Average (5 attributes)	Drop in Performance	FID
VGG-Face Features	C	Real Data	94.50	85.20	90.64	-	2
	C'	DCGAN	91.90	82.10	86.50	4.14	67.07
		MESCH	92.60	81.45	88.90	1.74	26.31
		LSGAN	92.10	80.80	88.35	2.29	42.01
		PGGAN	93.10	83.05	89.35	1.29	19.17

Results

- Below are the accuracies of various membership attacks. Here, training data comprises 50% of the attackers data, so that 50% represents random guessing.
- Note that membership attacks are all barely above guessing, with PGGAN being the most resistant to attacks.

	L ₂ Recovery	VGG-Face Recovery	VGG-19 Recovery	Discriminator D
DCGAN	54.1	54.5	51.6	57.1
MESCH	53.9	50.8	52.5	50.1
LSGAN ($ \mathcal{D}_T = 26k$)	54.8	54.1	54.0	62.9
LSGAN ($ \mathcal{D}_T = 5k$)	58.1	56.2	57.8	99.4
PGGAN	52.0	50.3	52.1	N/A

Conclusion

- Deep learning models are susceptible to membership attacks.
- Recent GAN generated images seem to be resistant against two types of membership attacks.
- Generated data can be used in lieu of real data, with similar classification performance on several tasks.

