

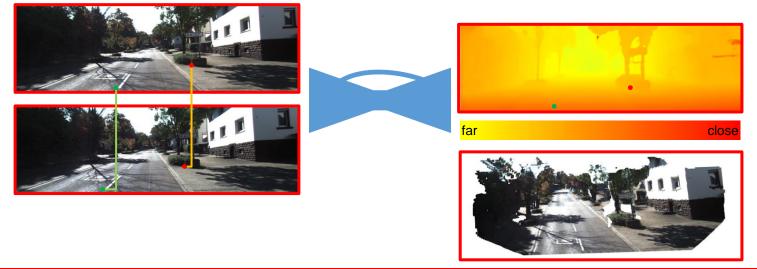
Leveraging a weakly adversarial paradigm for joint learning of disparity and confidence estimation

Matteo Poggi^{*}, Fabio Tosi, Filippo Aleotti, Stefano Mattoccia

Stereo matching is one of the most popular image-based techniques to infer depth

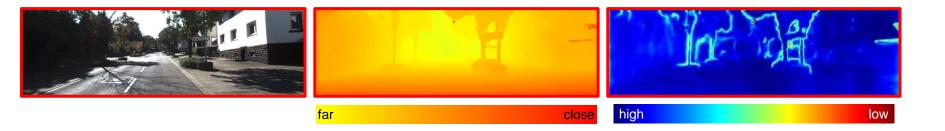
Given two images, the horizontal displacement (**disparity**) is computed for each pixel Neural networks **excel** at this

Depth is **triangulated** by knowing the camera parameters



In parallel to the rapid evolution of stereo matching solutions, estimating the **confidence** [1] of such algorithms as gained raising popularity

This task consists into assigning to each pixel a **score** that ranks how reliable the pixel itself is in the entire disparity map



Stereo matching and confidence

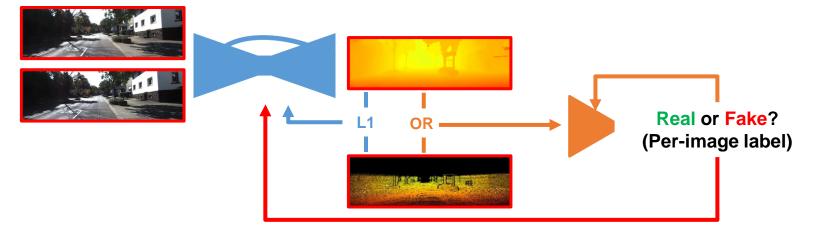
Why is it important? For instance, to detect wrong matches

Detecting the wrong matches produced by a stereo algorithm is crucial for higher-level reasoning (e.g., **obstacle avoidance**)

This task can be learned by **deep networks** as well

Joint disparity and confidence inference

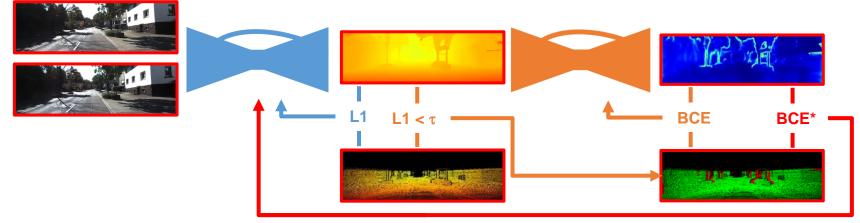
We propose to learn in synergy the two tasks, as a **competition** between the two networks A naïve strategy could consist into considering the disparity network as a **generator** Then, a **discriminator** to distinguish between ground truth and estimated disparity maps This would produce a single label (no per-pixel knowledge) and is not suited for sparse ground truth



We adopt a weakly adversarial strategy

The discriminator produces pixel-level labels (i.e., **confidences**) and is trained to distinguish correct disparities from outliers, on valid pixels only

Moreover, ad **adversarial term** over outliers forces the generator to produce better disparities, making wrong pixels **fewer and fewer**, thus weakening the adversarial term itself



Experimental setup

Baseline stereo network (generator): PSMNet [2] Confidence network (discriminator): ConfNet [3]

Competitors:

- Join frameworks: Reflective confidence estimation [4], Heteroscedastic uncertainty modeling [5]
- Confidence estimators: CCNN [6], ConfNet [3], LGC-Net [3]

Experimental results

Training on KITTI 2012, testing on KITTI 2015

Disparity estimation

	>2	(%)	>3	(%)	>4	(%)	>5	(%)	M	AE
Model	Noc	All								
PSMNet [5]	5.850	6.490	2.736	3.131	1.911	2.186	1.561	1.765	1.163	1.203
Heteroscedastic-PSMNet [41]	5.871	6.562	2.903	3.439	2.047	2.487	1.675	2.052	1.087	1.164
Reflective-PSMNet [33]	5.670	6.209	2.736	3.108	1.936	2.216	1.585	1.804	1.325	1.369
WAN-PSMNet (ours)	5.687	6.246	2.681	3.062	1.885	2.176	1.528	1.762	0.972	1.025

Confidence estimation

Estimator	AUCopt	AUC	AUCM
CCNN	0.398	1.265	0.867
ConfNet	0.398	2.282	1.884
LGC-Net	0.398	1.059	0.661
Heteroscedastic	0.395	0.955	0.560
Reflective	0.450	1.250	0.800
WAN	0.358	0.908	0.550

Training on Middlebury trainingQ, testing additionalQ

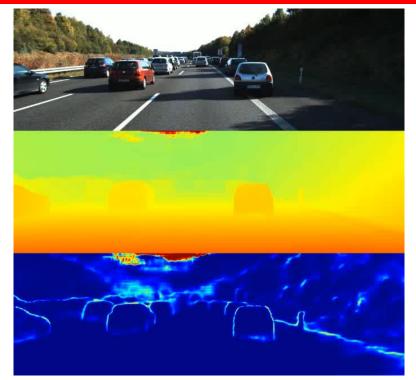
Disparity estimation

Model	>1(%)	>2(%)	>4(%)	MAE
PSMNet [5]	26.121	14.547	8.536	1.920
Heteroscedastic-PSMNet [41]	33.458	18.887	11.722	2.874
Reflective-PSMNet [33]	26.002	14.689	7.159	1.911
WAN-PSMNet (ours)	25.496	14.476	7.132	1.906

Confidence estimation

	AUCopt	AUC	AUCM
CCNN	0.046	0.217	0.176
ConfNet	0.046	0.248	0.207
LGC-Net	0.046	0.194	0.148
Heteroscedastic	0.090	0.363	0.273
Reflective	0.045	0.166	0.191
WAN	0.041	0.194	0.153

Qualitative results



Video available at: https://www.youtube.com/watch?v=Zk2IIIWKy78

Leveraging a weakly adversarial paradigm for joint learning of disparity and confidence estimation

[1]: M. Poggi, F. Tosi and S. Mattoccia, ICCV 2017 – «Quantitative evaluation of confidence measures in a machine learning world»

[2]: J. R. Chang and Y. S Chen, CVPR 2018 – «Pyramid Stereo Matching Network »

[3]: F. Tosi, M. Poggi, A. Benincasa and S. Mattoccia, ECCV 2018 – «Beyond local reasoning for stereo confidence estimation with deep learning»

[4]: A. Shaked and L. Wolf, CVPR 2017 – «Improved stereo matching with constant highway networks and reflective confidence learning»

[5]: A. Kendall and Y. Gal, NIPS 2017– «What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision»

[6]: M. Poggi and S. Mattoccia, BMVC 2016 – «Learning from scratch a confidence measure»

Thank you for your attention