Hierarchical Mixtures of Generators for Adversarial Learning

Alper Ahmetoğlu¹ and Ethem Alpaydın²

¹Department of Computer Engineering
Boğaziçi University
Istanbul, Turkey

²Department of Computer Science
Özyeğin University
Istanbul, Turkey
Generative Adversarial Networks

\[G(z; \theta) \]

\[z \sim p(z) \]

\[x \sim \{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\} \]

\[D(x; \phi) \]

\[x_{fake} \]

\[x_{real} \]

\[0.3 \]
Problems with GANs

• Vanishing or exploding gradients: $\log(1 - D(G(z)))$ or $-\log D(G(z))$

• Mode Collapse

Solution Approaches

• Architecture change: DCGAN, ProgGAN

• Objective change: LSGAN, WGAN

• Regularization methods: Spectral normalization
Combining Multiple Generators in GANs

- Multi-agent diverse GAN (MADGAN, Ghosh et al. 2018)
- Mixture GAN (MGAN, Hoang et al. 2018)
- Mixture of experts GAN (MEGAN, Park et al. 2018)
Hierarchical Mixture of Generators (HMoG)

\[\sigma_1(z) = \frac{1}{1 + \exp[-(v_1z + v_{10})]} \]

\[G_1(z) = W_1z + w_{10} \]
Flat Mixture of Generators (MoG)

\[a(z) = \text{softmax}(vz + v_0) \]

A. Ahmetoglu, E. Alpaydın

Hierarchical Mixture of Generators for Adversarial Learning
Hierarchical Mixture of Generators for Adversarial Learning

MADGAN

MGAN

MEGAN

MoG (ours)

HMoG (ours)

LEVEL 1

LEVEL 2

LEAVES

A. Ahmetoglu, E. Alpaydın

ICPR 2020, December, 2020
A. Ahmetoglu, E. Alpaydın

Hierarchical Mixture of Generators for Adversarial Learning

ICPR 2020, December, 2020
MNIST

FashionMNIST

UTZap50K

Oxford Flowers

CelebA
Conclusion

- We propose hierarchical mixtures of generators (HMoG).

- HMoG performs better than other multiple generator frameworks based on FID and 5-NN classifier tests.

- HMoG can be easily integrated with other GAN architectures.

- HMoG is interpretable to some extent.
alpera.xyz/hmog

Thank you for your time.

Questions and comments are welcome!