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Problem Statement

HAR datasets smaller and less diverse compared to image recognition datasets
-> training data bottleneck in deep neural network learning

Data limitation: Multi-modal model designs utilizing language, audio or other sensory
information

* Language- infused designs:
- Script data introduced to speech recognition models
- Constrained to a limited action set ->Action datasets with script data are scarce

« Action/ activity labels: source of linguistic information present in every dataset
- Contain motion motif(s), object presence, visual relationships
- Motion motif commonalities -> common verbs or verbs with high semantic similarity
- Object commonalities -> common nouns or nouns with high semantic similarity
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Proposed method: |||||
Define Action Granularity Tree from Action Labels

 Part-of-speech detection: use a part-of-speech (POS) tagger from the

Natural Language ToolKit (NLTK), to classify words into lexical categories Kctloi
» Tag refinement: refine with syntax rules to account for words with g g £ e e? = § 3
multiple semantic interpretations (e.g. screw : noun/verb, take off & takeout) £ = % £ £5 32 g 5
- Verbs: discriminate between cases of the same verb when followed S & 8 £ ® 5
by an ad-position or a particle (at, on, out, over, etc.) N : £z ¢ %

Fig. : Action hierarchy generated with the application of the

- From noun to verb: Gcceptdble action deSCfiption format proposed verb-centered lexical analysis on the class labels
oy e o of the MHAD dataset, [ Jumping in place, Jumping jacks,
verb + adpos’t’on/ Par ticle + noun Bending - hands up all the way down, Punching, Waving -
ope . . two hands, Waving - one hand, Clapping hands, Throwing a
* Cluster label sentences based on POS commonalities or hlgh semantic ball, Sit down then stand up, Sit down, Stand up. |

content similarity.

- Similarity : defined with a form of distance between the verb word
embeddings in WordNet.
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Incorporate Action Hierarchy ull 1=
in DNN designs

- DNN design directions:
- Modify the temporal modelling sub-network.

Mimic the N-level action granularity with a set of Spatial modeling net
subnets, one for each level (coarse-to-fine).

- Introduce the learned representations of the

coarser ones to finer sub-nets, using ¥ >
m Skip-connections & feature vector Core Tempora'.modelmg net
concatenations |

- Shallow action hierarchy cost function: Coarse temporal net Fine temporal net

C= _% g:l [Zi{:l Tﬁclog (Yng,Z) + ZiLzl wlTﬁ'log (Ynf?)] | 7 :

with W; :vector of label associations of the fine-grained action classes,

(77", Tnfn) : ground-truth labels for coarse- and fine-grained actions sets, \ i
Coarse-grained Fine-grained
. . | timates.
(Y, ,Y,I™) : the estimated action classes class estimates

class estimates.



Experimental Results

e Datasets: MHAD ("—GCtiOI’]S), J-HMDB (21—octions), Y Learning speed difference:
MPII Cooking Activities (64-actions)
10 =
Datasets 08
MHAD J-HMDB | MPII Cooking i3 07
Num unique verbs 9 verbs 19 verbs 42 verbs iB
Avg num verbs/Ibl | 1.128 verb/lbl 1.0 verb/lbl | 1.188 verbs/lbl z 06 -
Avg Ibl length 3.182 PoS/Ibl | 1.333 PoS/Ibl 2.297 PoS/lbl g 2 04
Avg asc via verb 0.545 asc/lbl 0.286 asc/lbl 1.656 asc/lbl o4 %
Max/min asc verb 1/0 asc 2/0 asc 5/0 asc o a8 s o
Num finer labels 11 21 64 - — Valkaton Finer Actons - 11 cases 121 o wikon st Actorm & omams
Num Gen labels 8 18 36 . 1_ nta ano? e m[:ns' [Ia“es' 01 — Validation No Hierarchical - 11 classes
0 100 200 300 400 T T T T T
Epochs 0 100 200 300 400
Epochs
(a) Hierarchical DNN (b) Hierarchical and Non-Hierarchical DNN
e Accuracy:
. L] [
Architecture Datasets (mAcc. (Coarse, Fine)%) o.bservql.tlons on.the. ImPGCt of
Design MHAD J-HMDB MPIT Cook hierarchical design:
NH-BiLSTM (-, 64.17)% (-, 36.28)% (-, 29.45)% o 4-6% score improvement in every deep
H-BiLSTM (82.50, 70.25)% | (45.68, 42.61)% | (60.70, 35.40)% \
NH-I3D (-, 89.61)% (-, 72.38)% (-, 48.18)% model & dataset case
H-I3D (98.75, 96.38)% | (78.47, 76.10)% | (70.47, 54.30)%

o Increases learning speed in the earlier
TABLE: Action recognition performance for MHAD, JHMDB and MPII datasets epochs of lea rning
between hierarchical (H) and non-hierarchical (NH) deep architecture designs.



Experimental Results

e Visualization of learned representations with PCA:
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Classes:
« Stand up
« Waving - two hands
« Jumping in place
« Jumping jack
« Throwing ball
« Waving - one hand (right)
wl® Sit down then stand up
Sit down
Bending - hands up all the way down
« Punching (boxing)
« Clapping hands
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» Waving - two hands

sl e Jumping in place

« Jumping jack

» Throwing ball

« Waving - one hand (right)
» Sit down then stand up

Sit down
Bending - hands up all the way down

*1 + Punching (boxing)
« Clapping hands
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Classification layer, MHAD dataset (a) Non-Hierarchical , (b) Proposed Hierarchical model design
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Conclusions & Future Work

Conclusions:

e Actionlabels contain a considerable amount of action-related information.

e Identifying action class similarities a priori using the linguistic description provides useful
insights regarding action complexity and hierarchy.

e Mimicking this hierarchical structure in a deep model design, leads to learning speed and
accuracy improvement (up to 6%), compared to a non-hierarchical design.

e Despite the increase in the number of hyperparameters (+20-24%), learning at early stages is
faster compared to a non-hierarchical design.

Future Work:

e Datasets with complex actions require elaborate linguistic analysis to capture the semantics
contained in the action labels.

e Investigate the effect of increasing the levels of action granularity in
o accuracy and learning speed
o layer level fusion selection
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Thank you!
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