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Motivation

> Multi-step (also called n-step) methods in Reinforcement Learning (RL), with
tabular representation of the value-function, have been shown to be more
efficient than the 1-step method due to faster propagation of the reward signal.

» Research in Deep Reinforcement Learning (DRL), with value-function and policy
approximated by deep neural networks, shows that multi-step methods improve
learning speed and final performance.

> However, there is a lack of understanding about what is contributing to the boost
of performance of multi-step methods in DRL.
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Assume Q%€ is represented by a function approximator Q4P"°* with noise E(s’,a’):
Qapprom(SI’ CL,) - Qtrue (S,, a/) u E(S’, a/)
Then, for Q-Learning technique
QPPT% (s, a) + r(s,a) + max QPPTT (¢ a’)
zero-mean noise may easily result in overestimation problem because

mE}X Qappro:c(SI’ CL’) = m%X Qt*rue(sl, CL,)
a a

S. Thrun, and A. Schwartz. "Issues in using function approximation for reinforcement learning." 1993.
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E.g., if Q" (s',a’y =0 and E [E(s',a' )] =0
then
H?XQappma: (s',a’) = max [Qm"fzw(sf7 a')+ E(s, a,’)]
=max [0+ E(s',a")] > 0
while “

max Q" e(s',a’) =0
a
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Background
Deen Deterministic Policy Gradient (DDPG)
Critic, i.e. Q-value, is optimized by minimizing
= 2
Lo = E(s, a0,re,5001)~U(D) [(Qt — Qoo (st at)) ]

where 0, = B : " .
Qr=re + S e S Qoo- (5t+1,0) , Qpo- is target critic, and [bgr— is

target actor representing the optimal policy.
Actor, i.e. policy, is optimized by maximizing
Joun = Eg,~u(D) [Qoe (St, por (5t))]
where (Qge and [L@r are online critic and actor, respectively.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. "Continuous control with deep reinforcement learning." 2015.
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Multi-step Deep Deterministic Policy Gradient (MDDPG)

Bootstrapped target Q is based on multi-step immediate rewards

A(n) _ { Z?;ol Y'riwi + 7" maxg Qoo- (Stan,a), if Vke[l,- - .,n] and diry # 1;
t Zf:_ol YTt if 3k e[l,---,n] and dip, = 1.

where n indicates n immediate rewards are used.

Then, Q is optimized by minimizing
- 5(n) ’
LBQ D E(St:ata'r‘ta”' :St—l—n:dt—l—n)NU(D) Qt - QQQ (Stﬂ a’t)
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« An average over target Q-values with different step sizes from 1 to n

(navg 3 Z Q(@)

« The minimum of a set of target Q-values

anmm) — min Q

i~[1,n]

« An average over target Q-values with step size from 2 to n, considering n= 1 is the most
prone to overestimation:

Agn(wg;ﬂ :ﬁz:?:z@gz)
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Experiment Results
Experimental Evidence of Multi-step Methods’ Effect on Alleviating Overestimation
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Fig. 1 Comparison among MDDPG, MMDDGP and DDPG on
AntPyBulletEnv-vo
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Experiment Results

« All positive gaps means multi-step methods
provide smaller estimated target Q-values
than that of the 1-step method.

» The larger the step, the smaller the
corresponding estimated target Q-value.

e The difference becomes smaller with
increased interactions.

« The magnitude of the estimated Q-value
decreases as the step size n increases.
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Fig. 2 The Difference in Estimated Target Q-values Between

1-step and Multi-step Methods, where the larger the value,
the bigger the difference.
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