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Motivation

 Multi-step (also called n-step) methods in Reinforcement  Learning  (RL), with 
tabular representation  of  the  value-function, have  been  shown  to  be  more  
efficient  than the 1-step method due to faster propagation of the reward signal.

 Research  in  Deep Reinforcement Learning (DRL), with value-function and policy 
approximated by deep neural networks, shows that multi-step methods improve 
learning speed and final performance. 

 However, there is a lack of understanding about what is contributing to the boost 
of performance of multi-step methods in DRL.
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Background
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S. Thrun, and A. Schwartz. "Issues in using function approximation for reinforcement learning." 1993.

Overestimation Problem

Assume 𝑄 is represented by a function approximator 𝑄  with noise 𝐸 𝑠 , 𝑎′ :

Then, for Q-Learning technique

zero-mean noise may easily result in overestimation problem because



Background
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Overestimation Problem

E.g., if 
and

then

while



Background
Deep Deterministic Policy Gradient (DDPG)
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T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. "Continuous control with deep reinforcement learning." 2015.

where isis target critic, and

Critic, i.e. Q-value, is optimized by minimizing 

Actor, i.e. policy, is optimized by maximizing 

, 

target actor representing the optimal policy.

where are online critic and actor, respectively.and



Multi-step Deep Deterministic Policy Gradient (MDDPG)
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Bootstrapped target Q is based on multi-step immediate rewards

Proposed Methods

Then, Q is optimized by minimizing

where n indicates n immediate rewards are used.



Mixed Multi-step DDPG (MMDDPG)
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• An average over target Q-values with different step sizes from 1 to n

• The minimum of a set of target Q-values

• An average over target Q-values with step size from 2 to n, considering n= 1 is the  most  
prone  to  overestimation:



Experiment Results

 Almost all MDDPG(n)  with 
n >1 outperform  DDPG

 Bad  performance  of  DDPG 
corresponds to  an  
extremely  overestimated  
Q-value
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Experimental  Evidence  of  Multi-step  Methods’  Effect  on Alleviating Overestimation

Fig. 1 Comparison among MDDPG, MMDDGP and DDPG on 
AntPyBulletEnv-v0
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Experiment Results
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Experimental  Evidence  of  Multi-step  Methods’  Effect  on Alleviating Overestimation

Fig. 2 The  Difference  in  Estimated  Target  Q-values  Between  
1-step  and Multi-step  Methods,  where  the  larger  the  value,  

the  bigger  the  difference. 

• All positive  gaps means multi-step methods 
provide smaller estimated target Q-values 
than  that  of  the 1-step  method.

• The  larger  the  step,  the smaller  the  
corresponding  estimated  target  Q-value.

• The difference becomes smaller with 
increased interactions.

• The magnitude of the estimated Q-value 
decreases as the step size n increases.
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Questions? Comments?

lingheng.meng@uwaterloo.ca
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