Text Recognition in Real Scenarios with a Few Labeled Samples

Jinghuang Lin¹ Zhanzhan Cheng² Yi Niu² Shiliang Pu² Shuigeng Zhou¹ ¹ School of Computer Science, Fudan University ² Hikvision Research Institute, China

Outline

- Introduction
- Method
- Experiments
- Conclusion

Motivation

- Scene text recognition(STR): Recognizing text in images captured in the wild
- **Goal:** Handling Scene text recognition(STR) in real scenarios where labelled samples are lacked

Application : Identification in production lines, vehicle license plate recognition in intelligent transportation systems, and container number identification in industrial ports etc.

Introduction

• **Challenges:** Most few-shot domain adaptation techniques are focus on character-level task and can hardly handle STR problem because it is a sequence-level image classification task.

 Idea: Split each text sequence to a sequence of "characters" without character-level annotations

Few-shot Adversarial Sequence Domain Adaptation (FASDA)

The architecture of FASDA consists of two procedures :

- 1) Weakly-supervised Character Feature Representation
- 2) Few-shot Adversarial Learning

Attention mechanism with Inclusive attending process

Define $\alpha_{t,j}$ as the attending weight of the t-th character

$$\alpha_{t,j} = \frac{exp(e_{t,j})}{\sum_{i=1}^{M} exp(e_{t,i})}$$

$$e_{t,j} = w^T tanh(Ws_{t-1} + Vx_j + b)$$

Define $\alpha'_{t,j}$ as the re-weighted attenting weight

$$\begin{aligned} \alpha'_{t,j} &= \lambda \alpha_{t,j} + \frac{1-\lambda}{\eta(1+\eta)} \sum_{i=1}^{\eta} A(t,j-i)(\eta+1-i) \\ &+ \frac{1-\lambda}{\eta(1+\eta)} \sum_{i=1}^{\eta} A(t,j+i)(\eta+1-i) \\ s.t. \quad A(t,j\pm i) &= \begin{cases} \alpha_{t,j\pm i} & 1 \leq j\pm i \leq M \\ \alpha_{t,j} & otherwise \end{cases} \end{aligned}$$

Few-shot adversarial learning

- Categories of character representation pair
 - G_1/G_2 : same class, same/different domain
 - G_3/G_4 : different class, same/different domain

$$\mathcal{L}_{D} = -\sum_{i=1}^{4} \sum_{S \in \mathcal{G}_{i}} y_{\mathcal{G}_{i}} log(D(\phi(\mathcal{S}))) \qquad \mathcal{L}_{G} = -\left[\sum_{S \in \mathcal{G}_{2}} y_{\mathcal{G}_{1}} log(D(\phi(\mathcal{S}))) + \sum_{S \in \mathcal{G}_{4}} y_{\mathcal{G}_{3}} log(D(\phi(\mathcal{S})))\right]_{i=1}$$

Experiments

Method	SVT	IC03	IC13	IC15
Source Only	19.6	44.1	46.8	14.5
FT w/ T	23.9	46.9	49.7	15.5
FT w/ S+T	25.1	52.3	51.1	16.4
FASDA-CR	27.5	55.8	54.9	18.6
$FASDA-CR^+$	28.8	56.8	56.6	19.1
FASDA-IA- CR^+	29.4	58.1	57.5	19.2

Table 1. Compared with the baselines

Experiments

Method	SVT		IC03			IC13	IC15
	50	None	50	Full	None	None	None
Yao et al.(2014)[45]	75.9	-	88.5	80.3	-	-	-
Jaderberg et al.(2016)[21]	95.4	80.7	98.7	98.6	93.1	90.8	-
Shi et al.(2017)[46]	96.4	80.8	98.7	97.6	89.4	86.7	-
Lee&Osindero (2016)[3]	96.3	80.7	97.9	97.0	88.7	90.0	-
Cheng et al.(2018)[25]	96	82.8	98.5	97.1	91.5	-	68.2
Bai et al.(2018)[1]	96.6	87.5	98.7	97.9	94.6	94.4	73.9
Liu et al.(2018)[24]	96.8	87.1	98.1	97.5	94.7	94.0	-
Shi et al.(2018)[5]	99.2	93.6	98.8	98.0	94.5	91.8	76.1
Li et al.(2019)[47]	98.5	91.2	-	-	-	94.0	78.8
Luo et al.(2019)[48]	96.6	88.3	98.7	97.8	95.0	92.4	68.8
Zhang et al.(2019)[11]	-	84.5	-	-	92.1	91.8	-
Shi et al.(baseline)(2016)[26]	96.1	81.5	97.8	96.4	88.7	87.5	-
Cheng et al.(baseline)(2017)[2]	95.7	82.2	98.5	96.7	91.5	89.4	63.3
Shi et al.(baseline)(2018)[5]	-	91.6	-	-	93.6	90.5	-
Luo et al.(baseline)(2019)[48]	-	84.1	-	-	92.5	90.0	68.8
Source Only	96.8	85.2	99.0	97.5	92.3	91.6	68.2
FT w/ S+T	96.4	86.5	98.7	97.6	93.0	92.4	71.8
FASDA	96.5	88.3	99.1	97.5	94.8	94.4	73.3

Table 2. Compared with the state-of-the-art

Conclusion

- We introduced FASDA to implement sequence-level domain adaptation for STR.
- FASDA can maximize the character-level confusion between the source domain and the target domain to handle the scenarios that only have a few labeled samples.
- Extensive experiments on various datasets show that our method significantly outperforms the finetuning scheme, and obtains comparable performance to the state-of-the-art STR methods.

THANKS!