Improving Explainability of Integrated Gradients with Guided Non-Linearity

Hyuk Jin Kwon, Hyung Il Koo, Nam Ik Cho

Introduction

- Category of Techniques (Global vs Local)
 - Global interpretability

• Local interpretability

- Category of Techniques (Global vs Local)
 - Global interpretability
 - Users can understand how the model works globally by inspecting the structures and parameters of a complex model.
 - Achieved by understanding the representations captured by the neurons at an intermediate layer.
 - Local interpretability

- Category of Techniques (Global vs Local)
 - Global interpretability
 - Users can understand how the model works globally by inspecting the structures and parameters of a complex model.
 - Achieved by understanding the representations captured by the neurons at an intermediate layer
 - Local interpretability
 - Locally examines an individual prediction of a model, trying to figure out why the model makes the decision it makes.
 - Identifying the contributions of each feature in a specific input to the prediction

- For Deep Neural Networks,
 - Hard to give constraint on each layer (Hard to give intrinsic properties)
 - → prefer post-hoc interpretability
 - Learned deep representations are usually not human interpretable (Hard to tell meanings of features)
 - \rightarrow prefer local interpretability

• For Deep Neural Networks,

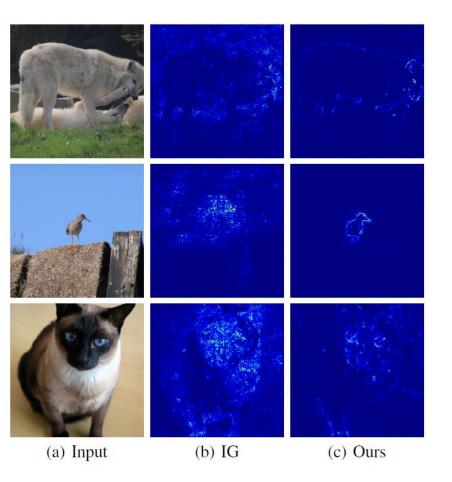
Post-hoc Local Explanation

- Target to identify the contributions of each feature in the input towards a specific model prediction
- Also called attribution methods

Label: white wolf

Label: redshank

Label: siamese cat



¹ Mukund Sundararajan, Ankur Taly, and Qiqi Yan, "Axiomatic attribution for deep networks," in *ICML*, 2017, pp. 3319–3328. (https://blog.fiddler.ai/2020/04/video-ai-explained-what-are-integrated-gradients/)

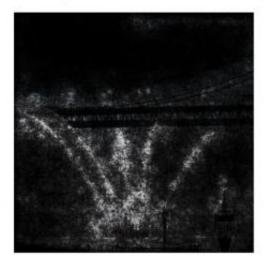
Existing Methods

• Integrated Gradients¹

IG(input, base) ::= (input - base) * $\int_{0^{-1}} \nabla F(\alpha * input + (1 - \alpha) * base) d\alpha$

Original image

Integrated Gradients



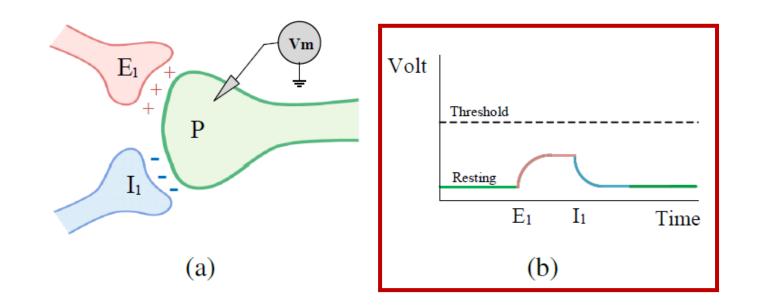
Our Approach

Motivation

- Neural networks are based on the modeling of neurons that have linear and non-linear parts.
- The **non-linear operators** in neural networks could be considered **axonal terminals** that **control the generation of action potentials** in postsynaptic cells by releasing neurotransmitters.

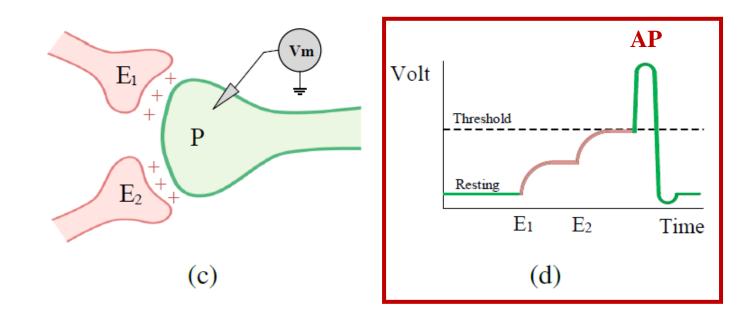
EPSP: Excitatory postsynaptic potential IPSP: Inhibitory postsynaptic potential

Motivation



(a) Synaptic cleft consists of two presynaptic neurons that one generates EPSP (*E*₁) and the other generates IPSP (*I*₁)
(b) Potential in postsynaptic neuron (P) → No action potential (AP)

Motivation



(c) Synaptic cleft consists of **two presynaptic neurons that generates EPSPs** (E_1 and E_2)

(d) Potential in postsynaptic neuron (P) \rightarrow Action potential (AP)

Motivation

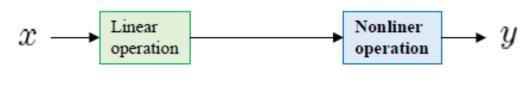
- We think that non-linear units (ReLU and max-pool) with positive gradients operate as EPSPs and the negative gradients as IPSPs.
- Thus, when we want to find the chain of fired neurons (with the backpropagation of gradients), we have to focus on neurons that generated EPSPs, not IPSPs.
- In other words, we have to focus on positive gradients to find the cause of the current prediction

• We computationally achieve this goal:

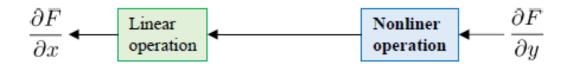
1. Clip negatively valued gradients in non-linear units to zero.

2. Use these new gradients in the path integral of IG

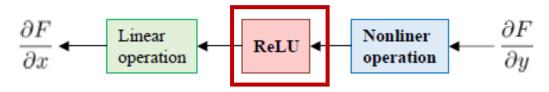
Forward Pass:



Backward Pass:



Proposed Backward Pass:



• For a ReLU,

Forward pass: $y = \operatorname{relu}(x) = x \odot I(x > 0)$

Backward pass:
$$\frac{\partial F(\cdot)}{\partial x} = \frac{\partial F(\cdot)}{\partial y} \odot I(x > 0)$$

Proposed backward pass:

$$\frac{\partial F(\cdot)}{\partial x} = \operatorname{relu}\left(\frac{\partial F(\cdot)}{\partial y} \odot I(x > 0)\right)$$

• For a max-pool,

Forward pass: $y_i = \max_j x_{ij}$

Backward pass:
$$\frac{\partial F(\cdot)}{\partial x_{ij}} = \frac{\partial F(\cdot)}{\partial y_i} \odot I(x_{ij} = y_i)$$

Proposed backward pass:

$$\frac{\partial F(\cdot)}{\partial x_{ij}} = \operatorname{relu}\left(\frac{\partial F(\cdot)}{\partial y_i} \odot I(x_{ij} = y_i)\right)$$

Networks: 5 CNN architectures

- VGG16, VGG19, ResNet34, ResNet50 and GoogleNet.
- Trained for ImageNet2012 classification task.

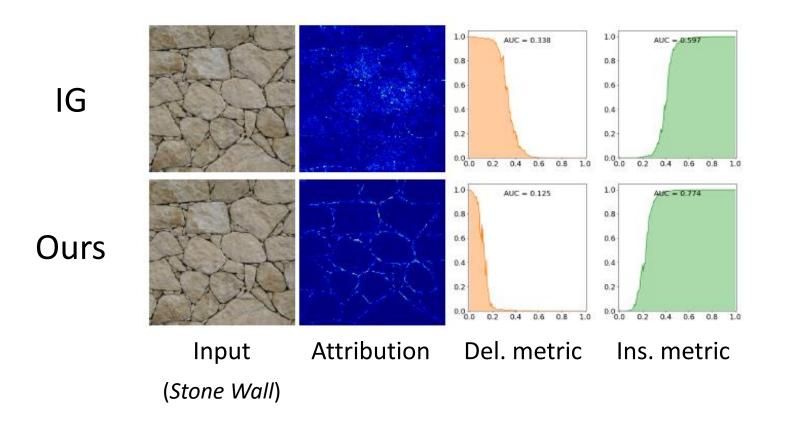
• Dataset:

- Validation split of ImageNet2012 classification database.
- 5,000 linearly sampled (1/10) images are used for test.

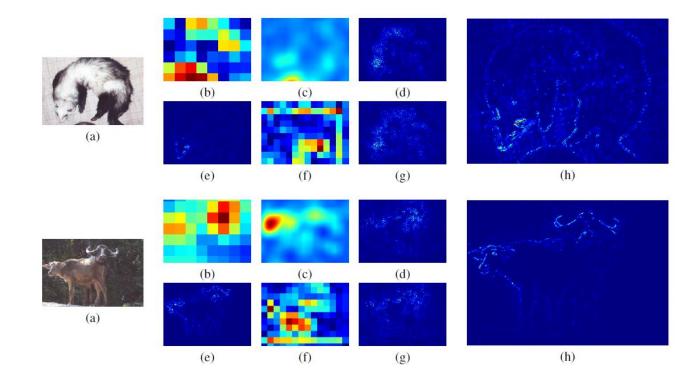
• Evaluation Metrics:

• Deletion/insertion metrics

• Qualitative Results



• Qualitative Results



• Quantitative Results

	VGG16		VGG19		ResNet34		ResNet50		GoogleNet	
Methods	Deletion \downarrow	Insertion ↑								
Occlusion [17]	0.1577	0.5755	0.1616	0.5770	0.1874	0.5914	0.2141	0.6309	0.1350	0.4667
LIME [28]	0.1014	0.6167	-	-	-	-	0.1217	0.6940	-	-
RISE [19]	0.0964	0.6048	0.0998	0.6070	0.1028	0.6308	0.1121	0.6762	0.0684	0.4995
Gradients [33]	0.0672	0.3270	0.0791	0.3423	0.1268	0.4221	0.1134	0.4234	0.0745	0.3574
GB [18]	0.0526	0.5279	0.0567	0.5445	0.0826	0.6141	0.0755	0.6460	0.0639	0.5124
GradCam [34]	0.1605	0.4305	0.1520	0.4578	0.1557	0.6333	0.1887	0.6715	0.1156	0.5086
IG [6]	0.0543	0.3621	0.0640	0.3792	0.1030	0.4575	0.0931	0.4589	0.0634	0.3936
Ours	0.0495	0.5151	0.0532	0.5295	0.0763	0.5932	0.0721	0.6295	0.0601	0.4912

Thank You