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Interpretable Machine Learning

e Category of Techniques (Global vs Local)

* Global interpretability

* Users can understand how the model works globally by inspecting the structures and
parameters of a complex model.

* Achieved by understanding the representations captured by the neurons at an
intermediate layer

* Local interpretability

e Locally examines an individual prediction of a model, trying to figure out why the model
makes the decision it makes.

 |dentifying the contributions of each feature in a specific input to the prediction



Interpretable Machine Learning

* For Deep Neural Networks,

* Hard to give constraint on each layer (Hard to give intrinsic
properties)

- prefer post-hoc interpretability

* Learned deep representations are usually not human interpretable
(Hard to tell meanings of features)

—> prefer local interpretability



Interpretable Machine Learning

* For Deep Neural Networks,

Post-hoc Local Explanation

- Target to identify the contributions of each feature in the
input towards a specific model prediction

- Also called attribution methods



Interpretable Machine Learning

Label: white wolf
Label: redshank

Label: siamese cat
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! Mukund Sundararajan, Ankur Taly, and Qigi Yan, “Axiomatic
attribution for deep networks,” in ICML, 2017, pp. 3319-3328.
(https://blog.fiddler.ai/2020/04/video-ai-explained-what-are-

EX i Sti n g I\/I et h O d S integrated-gradients/)

* Integrated Gradients?

[IG(input, base) ::= (input - base) *IO_1VF(a*input + (1-a)*base) da J

Original image Integrated Gradients




Our Approach



Motivation

* Neural networks are based on the modeling of neurons that have
linear and non-linear parts.

* The non-linear operators in neural networks could be considered
axonal terminals that control the generation of action potentials in
postsynaptic cells by releasing neurotransmitters.



EPSP: Excitatory postsynaptic potential
IPSP: Inhibitory postsynaptic potential

Motivation
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(a) Synaptic cleft consists of two presynaptic neurons that one
generates EPSP (E) and the other generates IPSP (I,)

(b) Potential in postsynaptic neuron (P) - No action potential (AP)



Motivation

(c) Synaptic cleft consists of two presynaptic neurons that generates

EPSPs (E{ and E5)

(d) Potential in postsynaptic neuron (P) - Action potential (AP)
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Motivation

* We think that non-linear units (ReLLU and max-pool) with positive
gradients operate as EPSPs and the negative gradients as IPSPs.

* Thus, when we want to find the chain of fired neurons (with the
backpropagation of gradients), we have to focus on neurons that
generated EPSPs, not IPSPs.

* In other words, we have to focus on positive gradients to find the
cause of the current prediction



Proposed Method

* We computationally achieve this goal:
1. Clip negatively valued gradients in non-linear units to zero.

2. Use these new gradients in the path integral of 1G



Proposed Method
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Proposed Method

* For a RelLU,
Forward pass: y =relu(z) =x ® I(x > 0)

oF(-) OF(:)
Ox 0y

Backward pass:

Proposed backward pass: OF) (8;5-) ®I(z > 0)>



Proposed Method

* For a max-pool,

Forward pass: y; = max;z;;

Backward pass: or oy © I(zi; = y;)
OF(- OF(-
Proposed backward pass: agf .) ( ay(_)
1] )



Evaluation



Evaluation

* Networks: 5 CNN architectures
* VGG16, VGG19, ResNet34, ResNet50 and GoogleNet.
 Trained for ImageNet2012 classification task.

* Dataset:
« Validation split of ImageNet2012 classification database.
5,000 linearly sampled (1/10) images are used for test.

 Evaluation Metrics:
* Deletion/insertion metrics



Evaluation

e Qualitative Results
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Evaluation

e Qualitative Results
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Evaluation

 Quantitative Results

VGGI16 VGGI19 ResNet34 ResNet50 GoogleNet

Methods Deletion | | Insertion 1 | Deletion | | Insertion T | Deletion | | Insertion T | Deletion | | Insertion 1 | Deletion | | Insertion T
Occlusion [17] 0.1577 0.5755 0.1616 0.5770 0.1874 0.5914 0.2141 0.6309 0.1350 0.4667
LIME [28] 0.1014 0.6167 - - - - 0.1217 0.6940 - -
RISE [19] 0.0964 0.6048 0.0998 0.6070 0.1028 0.6308 0.1121 0.6762 0.0684 0.4995
Gradients [33] 0.0672 0.3270 0.0791 0.3423 0.1268 0.4221 0.1134 0.4234 0.0745 0.3574
GB [18] 0.0526 0.5279 0.0567 0.5445 0.0826 0.6141 0.0755 0.6460 0.0639 0.5124
GradCam [34] 0.1605 0.4305 0.1520 0.4578 0.1557 0.6333 0.1887 0.6715 0.1156 0.5086
1G [6] 0.0543 0.3621 0.0640 0.3792 0.1030 0.4575 0.0931 0.4589 0.0634 0.3936

Ours 0.0495 0.5151 0.0532 0.5295 0.0763 0.5932 0.0721 0.6295 0.0601 0.4912
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