Finger Vein Recognition and Intra-Subject Similarity Evaluation of Finger Veins using the CNN Triplet Loss

Georg Wimmer, Bernhard Promegger, Andreas Uhl

Department of Computer Sciences University of Salzburg

Triplet Loss

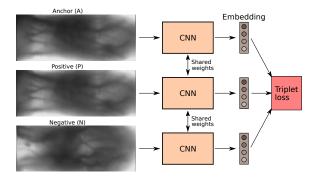


Figure: CNN training using the triplet loss

$$L(A, P, N) = \max(||f(A) - f(P)||^{2} - ||f(A) - f(N)||^{2} + \alpha, 0),$$

Advantage: CNN can also identify images from classes that where not used to train the net.

Employed Databases

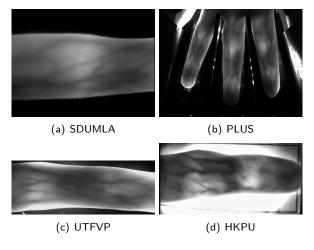


Figure: Example images from the employed datasets

Experiments are applied to ROI extracted images. CNN input image size is 224×224 .

Experimental Setup

- ► CNN architectures: SqueezeNet, Light CNN, ResNet 50
- 2-fold cross validation: Each fold consists of the images of half the subjects.
- ▶ We report the mean EER over the 2 folds
- ▶ Experiment 1: Common finger vein recognition (each finger of a subject is a separate class). The current understanding in literature is that different fingers of the same subject are unique identities.
- Experiment 2: Subject based recognition (all fingers of a subject belong to the same class)
 Object: identify the subject of a finger vein images from a finger that was not enrolled but only the other fingers of the subject
- Experiment 3: Symmetric finger type recognition (images of the same finger type (index, middle and ring finger) and subject belong to the same class).
 - Object: identify the finger type and subject of a finger vein image even though the considered finger was not enrolled but only its symmetric counterpart on the other hand

Results for common finger vein recognition

Methods	SDUMLA	UTFVP	PLUS	HKPU
Triplet SqueezeNet	2.7	2.5	2.4	3.7
Triplet ResNet	3.1	3.6	3.2	5.6
Triplet LightCNN	4.9	4.6	4.7	10.0
MC	4.0	0.2	0.5	1.0
PC	4.9	0.4	0.2	1.3
LBP	7.3	1.5	3.6	4.0
SIFT	5.4	1.5	0.8	1.8

Table: Recognition performance (EER in [%]) on four publicly available finger vein databases.

Results for subject based recognition (Experiment 2)

Methods	SDUMLA	UTFVP	PLUS
Triplet SqueezeNet	22.8	26.4	23.3
Triplet ResNet	21.9	24.3	26.9
Triplet LightCNN	25.3	30.4	30.1

Table: Recognition performance (EER in [%]) for subject based recognition)

Results for symmetric finger type recognition (Experiment 3)

Methods	SDUMLA	UTFVP	PLUS
Triplet SqueezeNet	15.2	23.0	11.3
Triplet ResNet	16.4	20.4	10.1
Triplet LightCNN	18.2	25.5	17.1

Table: Recognition performance (EER in [%]) for symmetric finger type recognition

Conclusion

- CNNs using the triplet loss function are suited for finger vein recognition
- Symmetrical fingers (same finger type but different hand, e.g. left and right index finger) share enough similarities to identify people.
- ▶ Different fingers of the same person also exhibit similarities, but not enough to identify people.

Thanks for your attention. Any questions?