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‣ Background: few-shot learning and meta-learning 

‣ Motivation: to solve the meta-overfitting problem

‣ Methodology: interpolation-based consistency regularization

‣ Experiment: implementation, result, and discussion

‣ Conclusion and future work
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Part I

Background
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Few-shot classification

‣ Few-Shot Learning (FSL) problem is a machine learning problem that learns with limited 

labelled data of the target tasks by incorporating external source data, with a different 

distribution.

‣ Few-Shot Classification is a few-shot learning task, which is defined as N-way, K-shot

– N is the number of classes in the target task

– K is the number of labelled examples per class
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Meta-Learning

‣ Most popular solutions of few-shot learning problems use meta-learning.

‣ Also known as ‘learning to learn’, aims to make a quick adaptation to new tasks with only a 

few examples.

‣ Many elegant solutions are proposed:

– Metric-based: Matching Network, Prototypical Network, Relation Network, etc.

– Optimization-based: Model-Agnostic Meta-Learning, Reptile, etc.

– Model-based: Memory-Augmented Meta-Learning, Meta Networks, etc.
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Model-Agnostic Meta-Learning (MAML)

‣ To train a model which can adapt to any new task using only a few labelled examples.

‣ The model is trained on various tasks (meta-tasks) and it treats the entire task as a training 

example.

‣ The model is forced to face different tasks so that it can get used to adapting to new tasks.
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Episodic training in MAML

‣ The model is trained on various meta-tasks and it treats an entire task as a training example.
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MAML – the meta-learning stage 
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MAML – the fine-tuning stage

‣ Before evaluation, the model will be fine-tuned for a few iterations:
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Part II

Motivation
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Motivation

‣ There exist weaknesses in current meta-learning algorithms, especially in forming 

generalizable decision boundaries (i.e., meta-overfitting).

‣ We aim to propose a regularization technique to solve the meta-overfitting problem.
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The meta-overfitting problem

‣ Conventional meta-learning algorithms may face meta-overfitting problems, which form a 

decision boundary staying too close to the limited labelled examples in the few-shot tasks.

‣ Empirical Risk Minimization allows large neural networks to memorize (instead of generalize

from) the training data.

12

expected risk:

empirical risk:



Part III

Methodology
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mixup – an interpolation-based regularization method

‣ Mixup [1] encourages the model to behave linearly in-between training examples, which 

reduces the amount of undesirable oscillations when predicting outside the training examples.

‣ We have adopted mixup in semi-supervised learning [2] and unsupervised domain 

adaptation [3].
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MetaMix – our methodology
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MetaMix – our methodology

‣ We generate virtual examples only from the query set for two reasons:

– The query set is responsible for optimizing the meta-objective across different training 

episodes, which is significant to the generalization of the learned initializer.

– Virtual examples generated by interpolating examples from the query set are expected to 

better approximate the real data distribution.
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Part IV

Experiment
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Experimental setup

‣ Dataset

– mini-ImageNet

• 100 classes, 600 84 × 84 colored images per class, 64 training / 16 validation / 20 testing.

– Caltech-UCSD Birds-200-2011 (CUB)

• 200 classes, 11,788 84 × 84 colored images in total, 100 training / 50 validation / 50 testing.

– Fewshot-CIFAR100 (FC100)

• 100 classes, 600 32 × 32 colored images per class, 60 training / 20 validation / 20 testing.
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Model setup

‣ Baselines

– Prototypical Networks, Matching Network, Relation Network

– MAML, First-Order MAML (FOMAML), Meta-SGD, Meta-Transfer Learning (MTL)

‣ Backbone model

– Shallow CNN with 4 convolutional blocks (Conv([32, 3, 3])+ReLU+BN+MaxPooling([2, 2]))

– ResNet-12 (in MTL)
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Results

‣ Comparison with baselines
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mini-ImageNet CUB FC100

Models 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Network 50.47 ± 0.80 64.83 ± 0.67 57.70 ± 0.87 71.42 ± 0.71 36.97 ± 0.67 49.44 ± 0.71

Prototypical Network 49.33 ± 0.82 65.71 ± 0.67 51.34 ± 0.86 67.56 ± 0.76 36.83 ± 0.69 51.21 ± 0.74

Relation Network 50.48 ± 0.80 65.39 ± 0.72 59.47 ± 0.96 73.88 ± 0.74 36.40 ± 0.69 51.35 ± 0.69

MAML 48.18 ± 0.78 63.05 ± 0.71 54.32 ± 0.91 71.37 ± 0.76 35.96 ± 0.71 48.06 ± 0.73

MetaMix+MAML 50.51 ± 0.86 65.73 ± 0.72 57.70 ± 0.92 73.66 ± 0.74 37.09 ± 0.74 49.31 ± 0.72

FOMAML 45.22 ± 0.77 60.97 ± 0.70 53.12 ± 0.93 70.90 ± 0.75 34.97 ± 0.70 47.41 ± 0.73

MetaMix+FOMAML 47.78 ± 0.77 63.55 ± 0.70 54.81 ± 0.97 72.90 ± 0.74 36.48 ± 0.67 49.48 ± 0.71

MetaSGD 49.93 ± 1.73 64.01 ± 0.90 56.19 ± 0.92 69.14 ± 0.75 36.36 ± 0.66 49.96 ± 0.72

MetaMix+MetaSGD 50.60 ± 1.80 64.47 ± 0.88 57.64 ± 0.88 70.50 ± 0.70 37.44 ± 0.71 51.41 ± 0.69

MTL 61.37 ± 0.82 78.37 ± 0.60 71.90 ± 0.86 84.68 ± 0.53 42.17 ± 0.79 56.84 ± 0.75

MetaMix+MTL 62.74 ± 0.82 79.11 ± 0.58 73.04 ± 0.86 86.10 ± 0.50 43.58 ± 0.73 58.27 ± 0.73

Accuracy with 95% confidence intervals of 5-way, K-shot (K=1, 5) classification tasks on mini-ImageNet, CUB, and FC100 datasets.



Results

‣ Analysis of hyper-parameter in Beta distribution
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Effect of Beta distribution. 𝛼ු is set to 0.1, 0.2, 0.5, 0.8, 1.0, 2.0, 4.0, 8.0.



Results

‣ Ablation study
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mini-ImageNet CUB

Set(s) 1-shot 5-shot 1-shot 5-shot

Q 50.51 ± 0.86 65.73 ± 0.72 57.70 ± 0.92 73.66 ± 0.74

S 47.87 ± 0.82 62.34 ± 0.65 54.39 ± 0.97 67.23 ± 0.74

Q+S 48.36 ± 0.81 64.06 ± 0.72 54.32 ± 0.93 70.30 ± 0.75

w/o mixup 48.18 ± 0.78 63.05 ± 0.71 54.32 ± 0.91 71.37 ± 0.76

An ablation study of doing mixup on different sets. Q denotes the query set and S

denotes the support set.



Results

‣ Analysis of the effect of the size of training data
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mini-ImageNet CUB FC100

Set(s) 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML(100%) 48.18 ± 0.78 63.05 ± 0.71 54.32 ± 0.91 71.37 ± 0.76 35.96 ± 0.71 48.06 ± 0.73

MetaMix+MAML(

100%)

50.51 ± 0.86 65.73 ± 0.72 57.70 ± 0.92 73.66 ± 0.74 37.09 ± 0.74 49.31 ± 0.72

MAML(50%) 46.34 ± 0.82 60.47 ± 0.73 50.78 ± 0.86 65.60 ± 0.81 35.38 ± 0.71 47.93 ± 0.78

MetaMix+MAML(

50%)

48.04 ± 0.79 63.52 ± 0.67 53.22 ± 0.91 70.13 ± 0.70 36.35 ± 0.74 48.11 ± 0.69

A comparison between using 100% and 50% training data; accuracy with 95% confidence intervals of 5-way, K-shot (K=1, 5) classification tasks on 

mini-ImageNet, CUB, and FC100 datasets.



Results

‣ Analysis of the effect of the size of training data

24A comparison among using 100%, 50%, 40%, and 30% of the training data.



Observations

‣ MetaMix improves the performance of all MAML-based algorithms over three datasets; 

meanwhile, MetaMix with MTL achieves state-of-the-art performance.

‣ When 𝛼ු is below 1.0, the accuracy is a little lower. When 𝛼ු is 1.0 and above, the performance 

maintains a good level.

‣ Mixing examples from only the query set performs best, compared with mixing examples from 

only the support set and mixing examples from both the support set and the query set.

‣ MetaMix performs more robust with the reduction of the size of the training data.
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Part V

Conclusions
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Conclusion

‣ We propose an improved meta-learning approach with the interpolation-based consistency 

regularization technique. It improves the performance of MAML-based algorithms.

‣ MetaMix achieves state-of-the-art results when integrated with Meta-Transfer Learning. 

‣ MetaMix is less sensitive to the reduction of the source training data, compared to MAML 

and its variants.
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Future work

‣ Apply MetaMix to a broader range of few-shot learning tasks.

‣ Compare more different conditions, under which meta-learning works, such as differences 

in the size of the source data, backbone models, and domains of the tasks.

‣ Propose more regularization techniques to solve the meta-overfitting problem.
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Thank you!
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