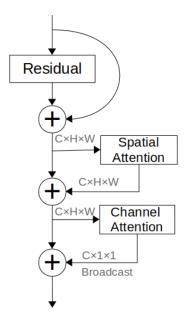
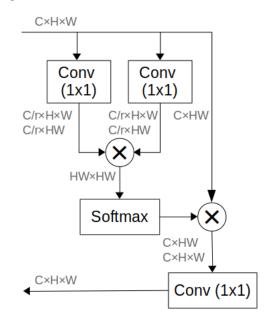

ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surface Defect Detection

Junting Fang Xiaoyang Tan

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics


01 Introduction |

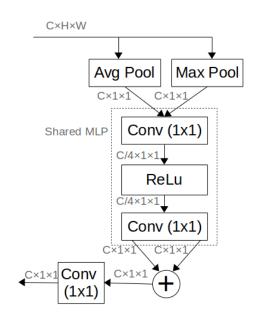
The architecture of ACRM


Three steps: a backbone network with an attention module; multi-IOU cascade R-CNN detectors; a Mix-NMS post-processing

Attention module

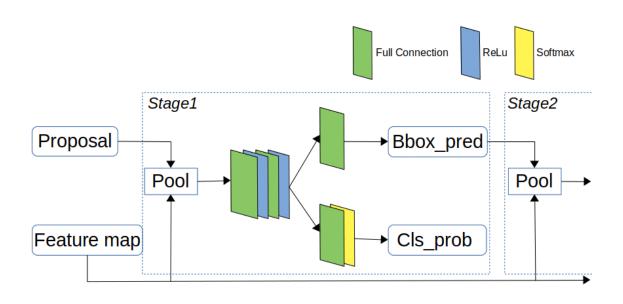
$$X' = f_s(X) \oplus X$$
$$X'' = f_c(X') \oplus X'$$

Spatial attention

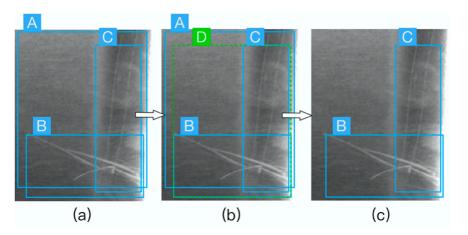


$$f_s(X) = \left\{ W_z \sum_{\forall j}^N \frac{f(x_i, x_j)}{C(X)} x_j \right\}_{i=1}^N$$

$$= \left\{ W_z \sum_{\forall j}^N \frac{e^{\theta(x_i)^T \phi(x_j)}}{C(X)} x_j \right\}_{i=1}^N$$


$$= W_z (softmax(X^T W_\theta^T W_\phi X) X)$$

Channel attention


$$f_c(X') = W_{\alpha}(f_{\delta}(X'_{avg}) + f_{\delta}(X'_{max}))$$

Cascade R-CNN

Loss Function: $L = \sum_{t=1}^{T} \alpha_t (L_{cls}(c_t, \hat{c}_t) + \beta L_{reg}(r_t, \hat{r}_t))$

Mix-NMS

Algorithm 1 Mix-NMS

end if

16: end while

15:

Input: Initial detection boxes set $B = \{b_1, \dots, b_n\}$, corresponding detection scores set $S = \{s_1, \ldots, s_n\}$, thresholds $\omega_1, \omega_2, \omega_3$ **Output:** Detection boxes set D, corresponding detection scores set S1: $\boldsymbol{D} \leftarrow \{\}$ 2: while $B \neq \emptyset$ do $b_m \leftarrow argmax \ Area(\mathbf{B})$ 4: $\mathbf{B} \leftarrow \mathbf{B} - \{b_m\}$ 5: $K \leftarrow \{\}$ while b_i in \boldsymbol{B} do if $IoS(b_i, b_m) \ge \omega_1$ and $s_i \ge \omega_2$ then 7: $K \leftarrow K \cup \{b_i\}$ 8: end if 9: end while 10: if $len(\mathbf{K}) >= 2$ and $IoU(mbr(\mathbf{K}), b_m) > \omega_3$ then 11: $S \leftarrow S - \{s_m\}$ 12: else 13: $oldsymbol{D} \leftarrow oldsymbol{D} \cup \{b_m\}$ 14:

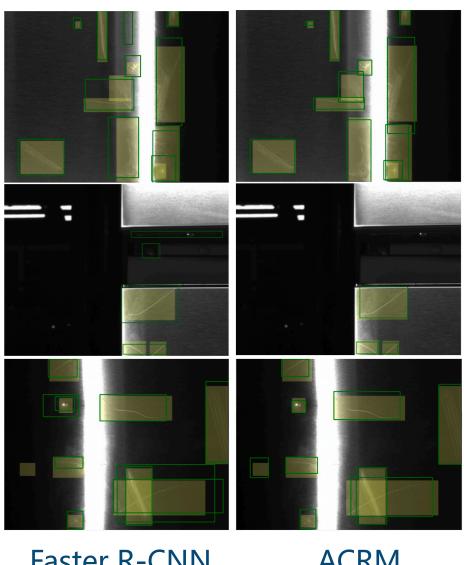
03 Experiment I

TABLE I ABLATION STUDY

(a) Combination			
	AP@.50(%)	AP@.75 (%)	
baseline	79.2	44.7	
+spatial	80.7	44.9	
+spatial+channel	81.9	46.8	
+channel+spatial	81.4	46.6	
+spatial&channel(in parallel)	81.1	45.7	

(c) Module design		
	AP@.50(%)	AP@.75 (%)
baseline	79.2	44.7
+spatial+channel	81.9	46.8
+NL block [8]	80.6	45.1
+GC block [33]	79.6	45.8

(d) Mix-NMS		
	AP@.50(%)	AP@.75 (%)
baseline+spatial+channel	81.9	46.8
baseline+spatial+channel+Mix-NMS	82.3	46.9


TABLE II
COMPARISON WITH TRADITIONAL METHOD

Method	Accuracy(%)
HOG+SVM [13]	73.3
GLCM+SVM [14]	76.2
ACRM(ours)	99.7

TABLE III
COMPARISON WITH STATE-OF-THE-ART DETECTORS

Method	Backbone	AP@.50(%)
YOLOv3 [6]	Darknet-53	67.3
CenterNet [28]	Hourglass-104	23.8
Faster R-CNN [24]	ResNet-101	73.2
TridentNet [25]	ResNet-101	71.9
Cascade R-CNN [10]	ResNet-101	74.9
Wen et al. [16]	26 layers CNN	69.1
ACRM(ours)	Attention ResNet-101	82.3

Defect detection results

Faster R-CNN

ACRM

THANKS

