GRAPH SIGNAL ACTIVE CONTOURS

Olivier LÉZORAY

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE

olivier.lezoray@unicaen.fr https://lezoray.users.greyc.fr

2. Graph Signal Active contours

3. Results

2. Graph Signal Active contours

3. Results

Graph signals

- A graph 𝔅 = (𝔅, 𝔅) consists in a finite set 𝔅 = {𝑢₁,...,𝑢_m} of vertices and a finite set 𝔅 ⊂ 𝔅 × 𝔅 of edges.
- A graph signal $f \in \mathcal{H}(\mathcal{V})$ is defined as $f : \mathcal{G} \to \mathbb{R}^d$
- With the advent of Big Data, graph signals are everywhere !

Graph signal segmentation

Our objective

To conceive an approach that enable the segmentation any graph signal.

Our building block : discrete calculus on graphs

We define a set of operators on graphs that provide similar definitions than for the

continuous case.

 $\begin{array}{lll} \mbox{Difference operator: } (d_w f)(v_i,v_j) & \mbox{Morphological difference operators: } (d_w^{\pm}f)(v_i,v_j) \\ \mbox{Gradient operator: } (\nabla_w f)(v_i) & \mbox{Gradient norm: } \|(\nabla_w f)(v_i)\|_p^p \\ \mbox{Morphological gradient norms: } \|(\nabla_w f)(v_i)\|_p^p = \|(\nabla_w^{\pm}f)(v_i)\|_p^p + \|(\nabla_w^{-}f)(v_i)\|_p^p \\ \mbox{p-Laplace operator } (\Delta_{w,p}f)(v_i) & \mbox{Curvature operator: } (\kappa_w f)(v_i) \end{array}$

Our contribution

An adaptation on graphs of a model that combines the Geodesic Active Contour and the Active Contour Without Edges models.

2. Graph Signal Active contours

3. Results

Graph Signal Active contours

Considered model

We consider geometric approaches with level sets.

Geodesic Active Contours

An energy if associated to a curve C(p): $E_{GAC}(C) = \int_0^1 g(I(C(p))) |C'(p)| dp$

Active Contours without edges

Considers two regions separated by a curve, and minimizes:

 $E_{ACWE}(\mathcal{C}, c_1, c_2) = \mu \cdot \text{Length}(\mathcal{C}) + \nu \cdot \text{Area}(\text{inside}(\mathcal{C})) + \lambda_1 \int_{\text{inside}(\mathcal{C})} |I(x) - c_1|^2 dx + \lambda_2 \int_{\text{outside}(\mathcal{C})} |I(x) - c_2|^2 dx$

Considered active contours: combines both

$$\begin{split} E(\mathcal{C},c_1,c_2) = \\ & \mu \int_0^1 g(\mathcal{C}(p)) |\mathcal{C}'(p)| dp + \nu \cdot \int_{\mathsf{inside}(\mathcal{C})} g(\mathcal{C}(p)) dA + \frac{\lambda_1}{d} \int_{\mathsf{inside}(\mathcal{C})} \|I(x) - c_1\|_2^2 dx + \frac{\lambda_2}{d} \int_{\mathsf{outside}(\mathcal{C})} \|I(x) - c_2\|_2^2 dx \end{split}$$

Graph Signal Active contours

Proposed adaptation on graphs

Our adaptation

- We consider local patches $\mathcal{P}_{\beta}(f, v_j)$ on a β -hop subgraph $B_{\beta}(v_i)$
- ► We propose a specific potential function *g*(*v_i*) that differentiates the most salient structures of a graph using patches comparison
- We consider average patch-based model to represent the regions (instead of vertex-based signal average)
- We express front propagation on graphs as $\frac{\delta f(v_i,t)}{\delta t} = \mathcal{F}(v_i) \| (\nabla_w f)(v_i,t) \|_p^p$ with $\mathcal{F}(v_i,t)$ a speed function.
- ► We propose a front propagation function that solves the considered active contours with discrete calculus: $\mathcal{F}(v_i, t) = \nu g(v_i) + \mu g(v_i)(\kappa_w f)(v_i, t) \frac{\lambda_1}{d} \sum_{v_i} d^2 (\mathcal{P}_{\beta}(f_I, v_i), \mathcal{P}_{\beta}^{c_1}(f_I)) + \frac{\lambda_2}{d} \sum_{v_i} d^2 (\mathcal{P}_{\beta}(f_I, v_i), \mathcal{P}_{\beta}^{c_2}(f_I))$

2. Graph Signal Active contours

3. Results

Results Grid Graph Signals

Figure: From left to right: (a) Original image, (b) Checkerboard initialization, (c) GSAC; $g(v_i) = 1, \beta = 0$, (d) $g(v_i)$, (e) GSAC; $g(v_i), \beta = 0$, (f) GSAC; $g(v_i), \beta = 1$.

Results

3D Colores Meshes

Figure: From top to bottom, left to right : (a) Original mesh, (b) $g(v_i)$ (inverted) (c) Checkerboard initialization, (d) GSAC; $g(v_i)$, $\beta = 0$, (e) GSAC; $g(v_i)$, $\beta = 2$, (f) manual initialization (g) extracted region with GSAC; $g(v_i)$, $\beta = 2$, (h) re-colorisation of the extracted region.

Graph signal active contours

Results

Image Dataset Graph

Figure: classification of a subset (digits 0 and 3) of the MNIST dataset. The colors around each image show the class it is affected to. The top row shows the initialization and bottom second row the final classification.

ſ	1	2	3	4	5	6	7	8	9
Ì	98.8	95.8	97	97.05	90.7	95.55	96.75	95.95	96.25

Table: Classification scores for the 0 digit versus each other digit of the MNIST database.

2. Graph Signal Active contours

3. Results

Conclusion

Our contribution

- Proposed an adaptation of active contours on graphs that combines the Geodesic Active Contour and Active Contours Without Edges approaches
- A level-set formulation has been adapted on graphs with a framework of graph operators that can describe the evolution of a front on a graph
- We incorporate specific graph features extracted in the form of a potential function and local graph patches to enhance the segmentation
- Presented many results on various graph signals

Future works

Multi-label extension using Voronoi Implicite Interface Model

The End

Dankie Gracias Criacuño Merci Takk Köszönjük Terima kasih Grazie Dziękujemy Dekojame Dakujeme Vielen Dank Paldies Kiitos Taname teid 谢谢 Thanke Yoeu Tak 感謝您 Obrigado Tesekkir Ederiz Zac euxapurotójue ଅሪካሮነ다 Bedankt Děkujeme vám ありかとうございます Tak

Publications available at : https://lezoray.users.greyc.fr

Fundings from Saint-Lo Agglo and NVIDIA

