

25th International Conference on Pattern Recognition

Vertex Feature Encoding and Hierarchical Temporal Modeling in a Spatio-Temporal Graph Convolutional Network for Action Recognition

Konstantinos Papadopoulos, Enjie Ghorbel, Djamila Aouada, Björn Ottersten

Interdisciplinary Center for Security, Reliability and Trust University of Luxembourg

January 13, 2021

Spatial-Temporal Graph Convolutional Networks

2

Yan et al. "Spatial temporal graph convolutional networks for skeleton-based action recognition", AAAI 2018

Background – ST-Graph Convolutional Networks

[1]: Li, et al., "Actional-Structural Graph Convolutional Networks for Skeleton-based Action Recognition", CVPR 2019
[2]: Si, et al. "An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition", CVPR 2019
[3]: Shi, et al. "Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition", CVPR 2019

Background – ST-Graph Convolutional Networks

[1]: Li, et al., "Actional-Structural Graph Convolutional Networks for Skeleton-based Action Recognition", CVPR 2019
[2]: Si, et al. "An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition", CVPR 2019
[3]: Shi, et al. "Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition", CVPR 2019

Background – ST-Graph Convolutional Networks

[1]: Li, et al., "Actional-Structural Graph Convolutional Networks for Skeleton-based Action Recognition", CVPR 2019
 [2]: Si, et al. "An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition", CVPR 2019
 [3]: Shi, et al. "Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition", CVPR 2019

Proposed Approach – Overview

Graph Vertex Feature Encoding

- Skeleton joints Q^i are given as input in vertices v_i at l = 1.
- Trained in an end-to-end manner with the network.
- The graph structure is preserved.

7

Dilated Hierarchical Temporal Convolutional Layer

• DH-TCN models both short-term and long-term dependencies.

- Placed at the last ST-GCN block.
- $\mathbf{f}_{temp}^{(k,n)} = f(\mathbf{W}_i^{DH} * {}_{\lambda} \mathbf{f}_{temp}^{(k,n-1)}), \text{ with } \mathbf{f}_{temp}^{(k,0)} = \mathbf{f}_{out}^{(k)}$
- $\mathbf{f}_{out}^{(k)}$: output feature map from the k^{th} (S-GCN) block
- * $_{\lambda}$: convolution with dilation $\lambda = 2^{n-1}$

Dilated convolutions are efficient in modeling long-term dependencies while at the same time they maintain efficiency.

Residual connection

Results

Method	NTU-60		NTU-120		Kinetics	
	X-subject	X-view	X-subject	X-setup	Top-1	Top-5
SkeleMotion	76.5	84.7	67.7	66.9	-	-
Body Pose Evolution Map	91.7	95.3	64.6	66.9	-	-
Multi-Task CNN with RotClips	81.1	87.4	62.2	61.8	-	-
Two-Stream Attention LSTM	76.1	84.0	61.2	63.3	-	-
Skeleton Visualization (Single Stream)	80.0	87.2	60.3	63.2	-	-
Multi-Task Learning Network	79.6	84.8	58.4	57.9	-	-
ST-GCN (10 blocks)	81.5	88.3	72.4*	71.3*	30.7	52.8
GVFE + ST-GCN w/ DH-TCN (4 blocks - ours)	79.6	88.0	72.3	71.7	29.0	50.9
AS-GCN (10 blocks)	86.8	94.2	77.7*	78.9^{*}	34.8	56.5
GVFE + AS-GCN w/ DH-TCN (4 blocks - ours)	86.4	92.9	79.2	81.2	-	-

Table 1: Accuracy of recognition (%) on NTU-60, NTU-120 and Kinetics datasets.

Reduced number of ST-GCNs – Almost similar performance

Table 2: Ablation study: accuracy of recognition (%) on NTU-120 dataset for cross-setup settings using ST-GCN as a baseline.

Method	Accuracy (%)
ST-GCN (4 blocks)	51.8*
GVFE + ST-GCN (4 blocks)	70.9
ST-GCN w/ DH-TCN (4 blocks)	68.3
GVFE + ST-GCN w/ DH-TCN (4 blocks - ours)	71.7

