PC-Net: A Deep Network for 3D Point Clouds Analysis

ICPR2020

Zhuo Chen, Tao Guan, Yawei Luo, Yuesong Wang, Keyang Luo, Luoyuan Xu

Laboratory of Digital Media Processing and Retrieval, HUST

Contributions

- We proposed a simple but effective method for point cloud analysis, called PC-Net, which includes three novel operations:
 - Scale-aware neighbor search
 - Local feature learning
 - Distance re-weighted pooling
- We designed effective network architecture with PC-Net
 - For classification
 - For segmentation

Overview of PC-Net

Overview of PC-Net. For a representative point, we first apply a scale-aware neighbor search on the point cloud for adaptive neighborhood extracting. Then for each neighboring point, we lift its coordinate into *Cloc* dimensional space and concatenate its associated feature and this local spatial feature. At the end, PC-Net uses a distance re-weighted pooling operation to aggregate information from all the neighboring points.

Scale-aware neighbor search

An illustration of different neighbor search strategies to get *K* neighbors (K = 12 in this example). (a) Directly taking in *K* nearest neighbors. (b) Uniformly sampling K input points from $K \times D$ neighboring points (*D* denotes the dilation rate and equals to 3 in this example). (c) Scale-aware neighbor search, which uses different sampling rates to extract points at different scales of the neighboring points.

Local feature learning

The spatially-local correlation in the neighborhood of representative points is important information to help generate output features.

First, learning local geometric features by applying $MLP(\cdot)$ function on the local coordin-ates of Pn as:

 $\mathbf{F_l} = MLP(\mathbf{P_n} - p),$

which lifts local coordinates into high dime-nsional feature space. Then we concatenate FI and Fn together as the new input features of Prep and forward them to another MLP(\cdot) function:

 $\mathbf{F}_{\mathbf{p}} = MLP([\mathbf{F}_{\mathbf{l}} \ \mathbf{F}_{\mathbf{n}}]).$

Distance re-weighted pooling

To exploit the distance correlation between neighboring points and p, we add a weight term Wp, which is defined as:

 $\mathbf{W}_{\mathbf{p}}(i) = exp(-\parallel p_i - p \parallel),$

where each feature associated with pi in Fp is re-weighted by the function of distance. The selection of Wp is based on the intuition that neighboring points close to the representative point should have more impact on each other. Consequently, the learned feature of p is:

$$\mathbf{f}_{\mathbf{p}} = MaxPool_{c}(\mathbf{W}_{\mathbf{p}} \times \mathbf{F}_{\mathbf{p}}).$$

The network architecture for point cloud understanding

Experimental Result

Classification

TABLE ICOMPARISONS OF MEAN PER-CLASS ACCURACY (MA) AND OVERALLACCURACY (OA) (%) ON MODELNET10.

Method	mA	OA
MPNN	-	92.07
PointNet++	-	92.51
SplineCNN	-	92.65
PointCNN	-	93.28
Kd-Net	93.5	94.0
KCNet	-	94.4
Ours	95.09	95.37

TABLE II COMPARISONS ON MODELNET40.

Method	mA	OA
VoxNet	83.0	85.9
Kd-Net	88.5	90.6
PointNet	86.2	89.2
PointNet++	-	90.7 (91.9, PN5000)
SO-Net	-	90.7 (93.4, PN5000)
3DmFV-Net	-	91.4 (91.6, P2048)
PCNN	-	92.3
KCNet	-	91.0
SpecGCN	-	91.5 (92.1, PN2048)
PointCNN	88.8	92.5
PointConv	-	92.5
Ours	89.97	93.33

Segmentation

Ablation Study

TABLE VAblation study on ModelNet40 test data.

Module used in PointNet++	OA
PointNet	89.4
PC-Net	91.5
w/o Scale-aware neighbor search	90.4
w/o Local spatial feature	90.1
w/o Distance re-weighted pooling	91.2
Multiple Classifiers	OA
without MC	91.5
with MC in PointCNN	92.8
with our MC	93.3

TABLE VI Ablation study on ShapeNet test data.

Multi-scale Features Recognition	mIoU
without multi-scale predictions	84.6
with multi-scale predictions	85.12

Thank you !