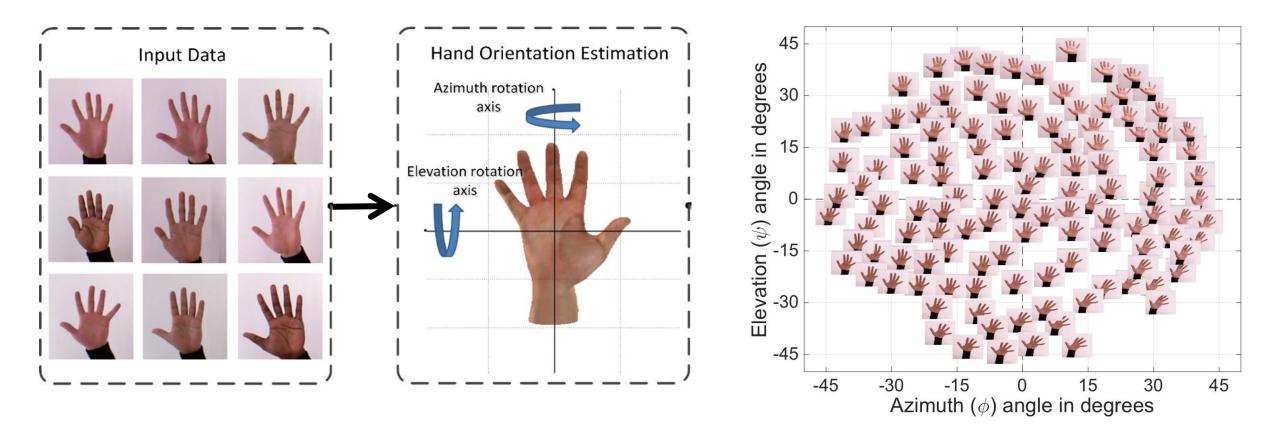
PROPEL: Probabilistic Parametric Regression Loss for Convolutional Neural Networks

Muhammad Asad, Rilwan Basaru, S M Masudur Rahman Al Arif, and Greg Slabaugh

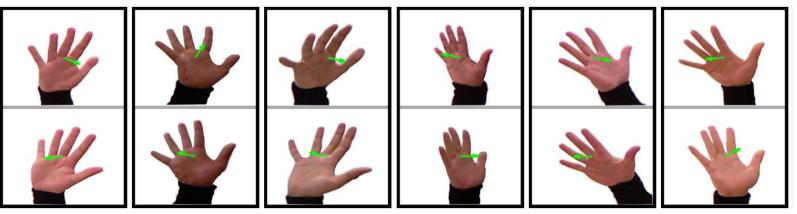
Problem Definition

• Can we use a machine learning model to learn the mapping of 2D images onto 3D hand orientation?

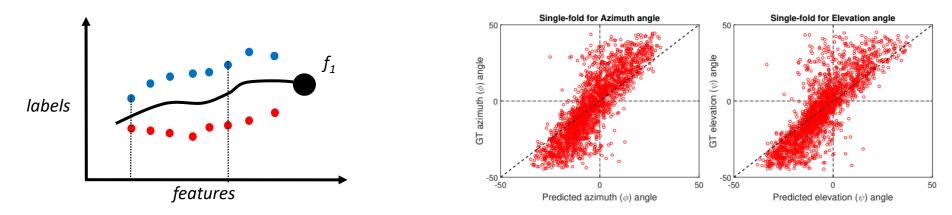


Why Probabilistic Regression?

• Symmetry problem: opposite orientation $\leftarrow \rightarrow$ similar hand shapes



• Existing regression methods *try to fit* into the data [1]

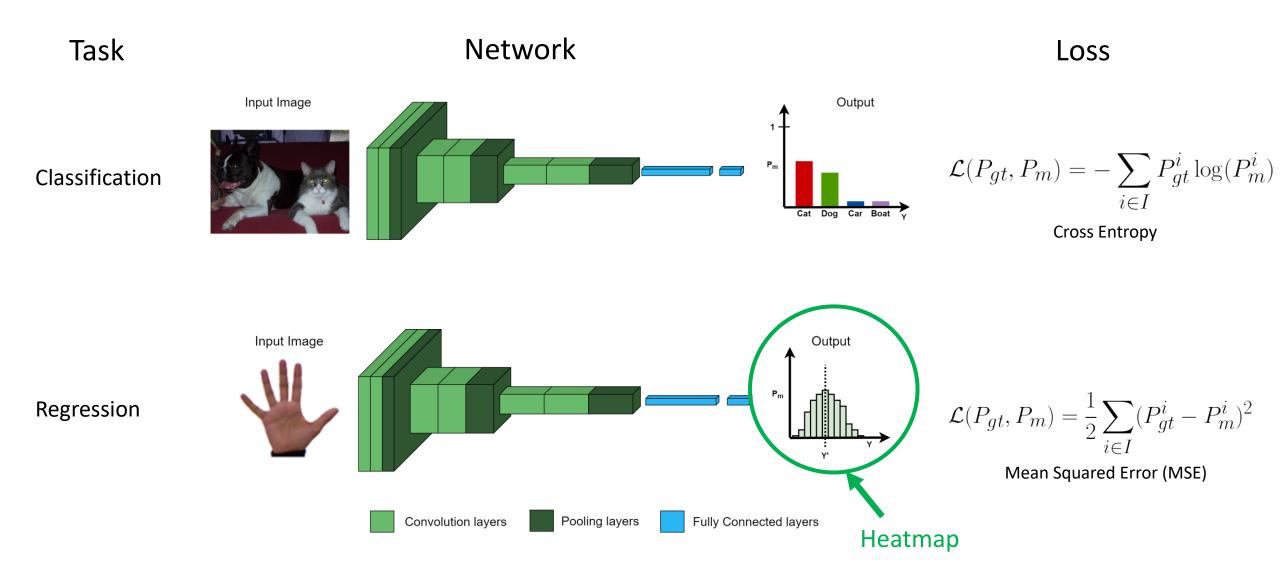


• Motivates the need for probabilistic regression to handle ambiguity

[1] M. Asad, G. Slabaugh. "Learning marginalization through regression for hand orientation inference." CVPR Workshop. 2016.

Existing Probabilistic Learning with CNNs

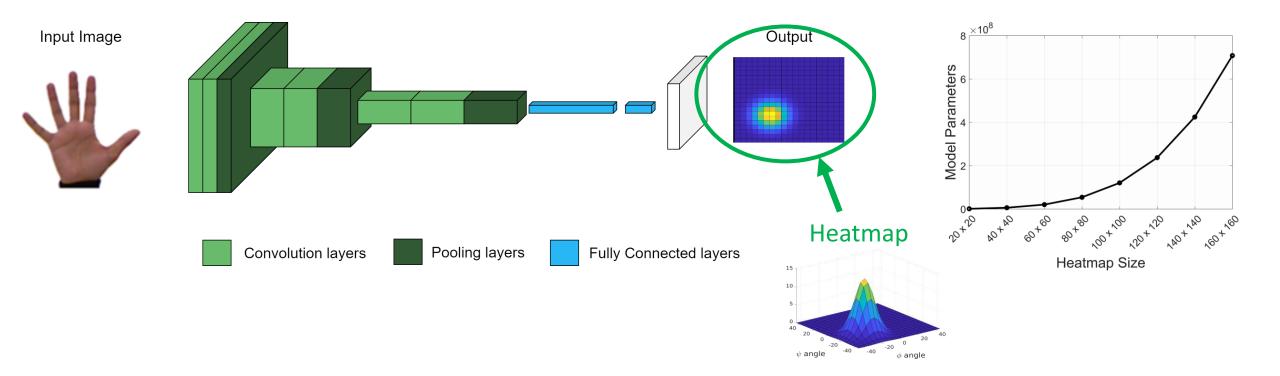
Let P_{gt} be ground truth target distribution, CNN learns P_m using loss functions:



Existing Probabilistic Regression using CNNs

CNN learns probability heatmap distribution

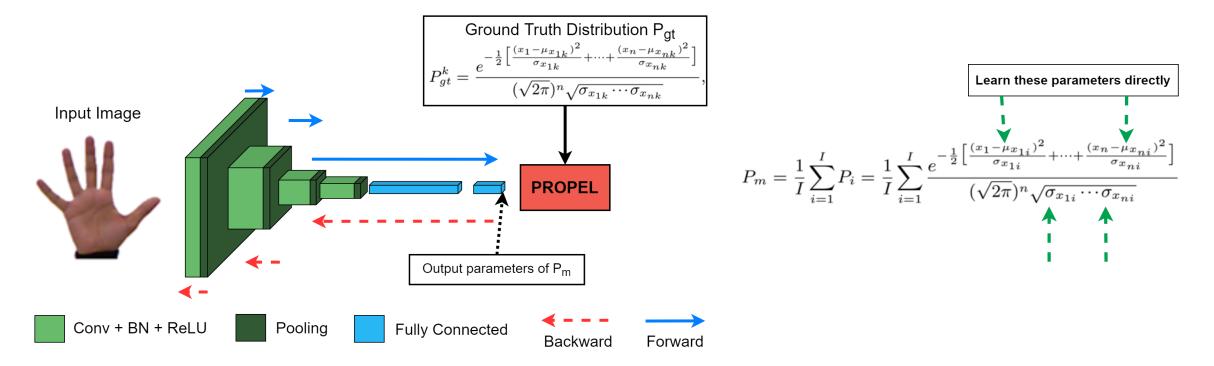
- Require additional model parameters (as compared to directly learning target)
- Discretized target space \rightarrow error in model output
- Higher dimensional target \rightarrow exponential increase in parameters
- Increased model complexity \rightarrow overfitting



PRObabilistic Parametric rEgression Loss (PROPEL)

Contributions:

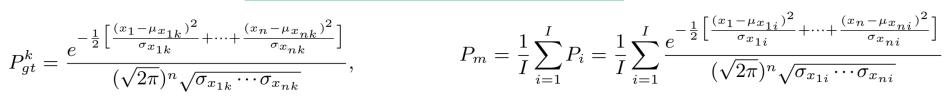
- Enables CNNs \rightarrow learn parameters of a mixture of Gaussians probability distribution
- Fully-differentiable \rightarrow analytic closed form solution \rightarrow works with standard CNNs/optimizers
- Generalized to \rightarrow higher dimensional targets \rightarrow multi-modal distributions
- Better generalization with 10x less model parameters



PROPEL Definition

- Let $\mathbf{x} = \{x_1, x_2, \cdots, x_n\}^\intercal \in \mathbb{R}^n$ define target prediction space
- PROPEL is defined as (using metric from [*]):

$$L = -\log\left[\frac{2\int P_{gt}P_m d\underline{\mathbf{x}}}{\int (P_{gt}^2 + P_m^2) d\underline{\mathbf{x}}}\right]$$



 P_{gt} : n-dimensional ground truth PDF

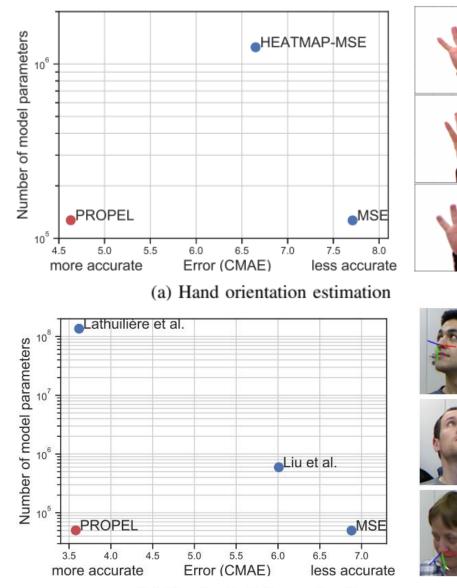
 P_m : n-dimensional mixture of Gaussian learned model PDF

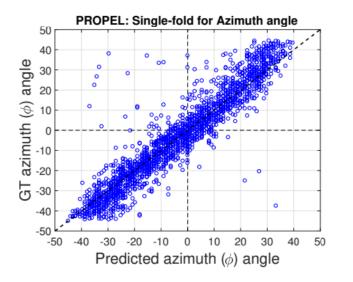
• Partial derivatives for optimizing each parameter in model PDF P_m :

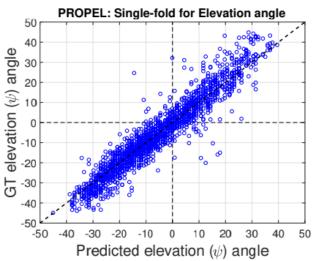
$$\frac{\partial L}{\partial \mu_{x_{ni}}} = -\frac{1}{T1} \left[\frac{\partial G(P_{gt}, P_i)}{\partial \mu_{x_{ni}}} \right] + \frac{1}{T2} \left[\frac{2}{I^2} \sum_{i < j}^{I} \frac{\partial G(P_i, P_j)}{\partial \mu_{x_{ni}}} \right], \qquad \frac{\partial L}{\partial \sigma_{x_{ni}}} = -\frac{1}{T1} \left[\frac{\partial G(P_{gt}, P_i)}{\partial \sigma_{x_{ni}}} \right] + \frac{1}{T2} \left[\frac{1}{I^2} \frac{\partial H(P_i)}{\partial \sigma_{x_{ni}}} + \frac{2}{I^2} \sum_{i < j}^{I} \frac{\partial G(P_i, P_j)}{\partial \sigma_{x_{ni}}} \right]$$

[*] S. Giorgos, et al. "An analytic distance metric for Gaussian mixture models with application in image retrieval." International Conference on Artificial Neural Networks (ICANN). 2005.

Experimental Validation: Accuracy + Efficiency







(b) Head orientation estimation

^{64×16} 32×32 ×128× 16×16×32 ×8×32 2048 20 2 12 PROPE Con no On ч R S 3x3 Conv + Batch Norm + ReLU + Fully Connected PROPEL Reshape Sigmoid 2x2 Max Pool

Conclusion

- Importance of Probabilistic Regression
- Limitations with existing heatmap based CNN Regression
- PROPEL: enables learning parameters of probability distribution, achieves state-of-theart accuracy with 10x less model parameters

Future Work:

- Look at higher dimensional targets learning, e.g. human body/hand pose estimation
- Selecting the number of Gaussians in model distribution
- Introduce covariance to learn covarying targets

See you at poster session T1.1 😳