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Computer Vision Tasks
Introduction
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• Image classification

• Object detection

• Semantic segmentation

• Human pose estimation

• Etc.
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Human Pose Estimation

Source: https://www.danioved.com/portfolio/posenet/

Introduction

Source: https://www.homecourt.ai/

• Important task in computer vision

• Recognizing human keypoints in given images

• Wide range of applications: movement 

diagnostics, self-driving vehicle, etc.

https://www.danioved.com/portfolio/posenet/
https://www.homecourt.ai/
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Simple Pipeline for Human Pose Estimation using Heatmaps
Introduction

1. Image understanding: generating feature maps using 

feature extractor

2. Heatmap generation: generating heatmaps using 

upsampling layers

3. Human pose inference: 

• Predicting keypoint’s location using generated 

heatmaps

• Connecting predicted keypoints using a pre-

defined skeleton
Heatmaps: location confidence 
of keypoints

Feature extractor
Human skeleton

Heatmap generator

Input image

Features Heatmaps
Output
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Multi-resolution Learning
Method
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Observation
Method

Left wrist is occluded

• We can infer the wrist location thanks to other keypoints such as elbow, shoulder, or 

even human skeleton

• The model needs not only specific features (elbow, shoulder, etc.) but also overall 

patterns (human skeleton, etc.)
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Motivation and Approach
Method

Feature 
extractor

Heatmap
generator Inference

Human pose estimation using heatmaps

• Xiao et al. [1] proposed a simple architecture for human pose estimation:
• Generating heatmaps only from lowest-resolution feature maps
• Achieving better accuracy compared to previous methods

• Argument: the simple architecture could be ameliorated if it can learn the features 
from multiple resolutions
• The high resolution allows capturing overall information
• The low resolution aims to extract specific characteristics

[1]. B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation and tracking,” in Proceedings of the
European conference on computer vision (ECCV), 2018
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Motivation and Approach
Method

Two approaches:

• Multi-resolution heatmap learning:

• Achieves the multi-resolution heatmaps after the lowest-resolution 

feature maps are obtained

• Branches off at each resolution of the heatmap generator and adds extra 

layers for heatmap generation

• Multi-resolution feature map learning:

• Directly learns the heatmap generation at each resolution of the feature 

extractor

Baseline for human pose estimation using heatmaps
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Multi-resolution Heatmap Learning
Method

MRHeatNet1 MRHeatNet2

• The lowest-resolution heatmaps are upsampled

to the higher resolution (called medium 

resolution) and then combined with the 

heatmaps generated at this medium resolution

• The result of the combination is fed into a 

deconvolutional layer to obtain the highest-

resolution heatmaps

• The heatmaps at each resolution are 

upsampled to the highest-resolution 

heatmaps independently and then 

combined at the end
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Multi-resolution Feature Map Learning
Method

MRFeaNet1 MRFeaNet2

• The number of output channels of 

deconvolutional layers is kept 

unchanged

• The number of output channels is different 

among the deconvolutional layers

• To avoid the loss of previously learned 

information
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Evaluation Metric
Experimental Results

• COCO dataset:
• Object Keypoint Similarity (OKS):

• OKS plays the same role as the IoU in object detection  the average 
precision (AP) and average recall (AR) scores could be computed

• MPII dataset:
• Percentage of Correct Keypoints (PCK):

• The percentage of correct detection that falls within a tolerance 
range which is a fraction of torso diameter

• Percentage of Correct Keypoints with respect to head (PCKh):
• Is almost the same as PCK except that the tolerance range is a 

fraction of head size
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Results on COCO val2017 dataset
Experimental Results

[4]. A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose estimation,” in European conference on
computer vision, 2016
[5]. Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid network for multi-person pose estimation,”
in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018
[6]. B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation and tracking,” in Proceedings of the European
conference on computer vision, 2018

• Our architectures outperform Hourglass and CPN

• With ResNet-50 backbone, Online Hard Keypoints Mining (OHKM) helps CPN gain the AP 

by 0.8 points, but still being 1.5 points lower than the AP of MRFeaNet2

• In comparison with SimpleBaseline, MRHeatNet has slightly worse performance, but 

MRFeaNet is superior

1.5
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Results on COCO test-dev dataset
Experimental Results

[10]. Cao et al., 2017
[11]. Newell et al., 2017

[12]. Papandreou et al., 2018
[13]. Kocabas et al., 2018

[14]. He et al., 2017
[15]. Papandreou et al., 2017

[16]. Sun et al., 2018
[6]. Xiao et al., 2018

• Our architectures outperform bottom-up and top-down approaches

• In comparison with SimpleBaseline, MRFeaNet improves the AP by 0.4, 0.3, and 0.2 points 

in the case of using the ResNet-50, ResNet-101, and ResNet-152 backbone, respectively

1.9
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Results on MPII dataset
Experimental Results

• Our architectures outperform 

numerous previous methods

• MRFeaNet1 gains PCKh@0.5 score by 

0.6, 0.3 and 0.2 points compared to 

SimpleBaseline in the case of using the 

ResNet-50, ResNet-101, and ResNet-

152 backbone, respectively

• The performance could be improved if 

using the larger backbone network
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Qualitative results on COCO dataset
Experimental Results

• Both legs of the woman are 
hidden under the table

• Our models can make their 
opinion

• The case of occluded 
keypoints

• MRFeaNet still relatively 
precisely predicts the human 
keypoints

MRHeatNet1 MRHeatNet2 MRFeaNet1 MRFeaNet2
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Qualitative results on MPII dataset
Experimental Results

Right leg and left ankle are 
occluded  the prediction 
has low confidence

All keypoints are 
predicted with high 
confidence

Two ankles are not 
displayed the 
prediction has very 
low confidence



Trung Q. Tran, Giang V. Nguyen, Daeyoung Kim SimMRPose /  23

Experimental Results
03

Method
02

Introduction
01

21

Table of Contents

Conclusion
04



Trung Q. Tran, Giang V. Nguyen, Daeyoung Kim SimMRPose /  2322

Conclusion and Future Work
Conclusion

• We introduce two novel approaches for multi-resolution representation learning:

• The first approach reconciles a multi-resolution representation learning 

strategy with the heatmap generator where the heatmaps are generated at 

each resolution of the deconvolutional layers

• The second approach achieves the heatmap generation from each 

resolution of the feature extractor

• Our architectures are simple yet effective, and experiments show the superiority

of our methods over numerous methods

• Our approaches could be applied to other tasks which have the architecture of 

encoder (feature extractor) and decoder (specific tasks) such as image captioning 

or image segmentation
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Thank you!


