International Conference on Pattern Recognition

Simple Multi-Resolution Representation Learning for Human Pose Estimation

Trung Q. Tran, Giang V. Nguyen, Daeyoung Kim

Korea Advanced Institute of Science and Technology trungtq2019@kaist.ac.kr

Computer Vision Tasks

Cat: 88%

Dog: 10%

Lion: 1%

Tiger: 0.5%

Bird: 0.5%

- Image classification
- Object detection
- Semantic segmentation
- Human pose estimation
- Etc.

Human Pose Estimation

- Important task in computer vision
- Recognizing human keypoints in given images
- Wide range of applications: movement diagnostics, self-driving vehicle, etc.

Source: https://www.homecourt.ai/

Introduction Simple Pipeline for Human Pose Estimation using Heatmaps

- Image understanding: generating feature maps using feature extractor
- **2. Heatmap generation**: generating heatmaps using upsampling layers
- 3. Human pose inference:
 - Predicting keypoint's location using generated heatmaps
 - Connecting predicted keypoints using a predefined skeleton

Heatmaps: location confidence of keypoints

Multi-resolution Learning

Observation

Left wrist is occluded

- We can infer the wrist location thanks to other keypoints such as elbow, shoulder, or even human skeleton
- The model needs not only specific features (elbow, shoulder, etc.) but also overall patterns (human skeleton, etc.)

Motivation and Approach

Human pose estimation using heatmaps

- Xiao et al. [1] proposed a simple architecture for human pose estimation:
 - Generating heatmaps only from lowest-resolution feature maps
 - Achieving better accuracy compared to previous methods
- Argument: the simple architecture could be ameliorated if it can learn the features from multiple resolutions
 - The high resolution allows capturing overall information
 - The low resolution aims to extract specific characteristics

[1]. B. Xiao, H. Wu, and Y. Wei, "Simple baselines for human pose estimation and tracking," in *Proceedings of the European conference on computer vision (ECCV)*, 2018

Motivation and Approach

Two approaches:

Baseline for human pose estimation using heatmaps

Multi-resolution heatmap learning:

- Achieves the multi-resolution heatmaps after the lowest-resolution feature maps are obtained
- Branches off at each resolution of the heatmap generator and adds extra layers for heatmap generation

Multi-resolution feature map learning:

Directly learns the heatmap generation at each resolution of the feature extractor

Multi-resolution Heatmap Learning

- The lowest-resolution heatmaps are upsampled to the higher resolution (called medium resolution) and then combined with the heatmaps generated at this medium resolution
- The result of the combination is fed into a deconvolutional layer to obtain the highestresolution heatmaps

 The heatmaps at each resolution are upsampled to the highest-resolution heatmaps independently and then combined at the end

Multi-resolution Feature Map Learning

 The number of output channels of deconvolutional layers is kept unchanged

- The number of output channels is different among the deconvolutional layers
- To avoid the loss of previously learned information

Evaluation Metric

COCO dataset:

Object Keypoint Similarity (OKS):

$$OKS = \frac{\sum_{i} [exp(-d_{i}^{2}/2s^{2}k_{i}^{2})\delta(v_{i} > 0)]}{\sum_{i} [\delta(v_{i} > 0)]}$$

 OKS plays the same role as the IoU in object detection → the average precision (AP) and average recall (AR) scores could be computed

MPII dataset:

Percentage of Correct Keypoints (PCK):

$$\frac{\|y_i - \hat{y}_i\|_2}{\|y_{rhip} - y_{lsho}\|_2} \le r$$

- The percentage of correct detection that falls within a tolerance range which is a fraction of torso diameter
- Percentage of Correct Keypoints with respect to head (PCKh):
 - Is almost the same as PCK except that the tolerance range is a fraction of head size

Results on COCO val2017 dataset

Method	Backbone	Pretrain	AP	\mathbf{AP}^{50}	\mathbf{AP}^{75}	\mathbf{AP}^M	\mathbf{AP}^L	AR	\mathbf{AR}^{50}	\mathbf{AR}^{75}	$\mathbf{A}\mathbf{R}^{M}$	$\mathbf{A}\mathbf{R}^L$
8-stage Hourglass [4]	8-stage Hourglass	N	66.9	-	-	-	-	-	-	-	-	-
CPN [5]	ResNet-50	Y	68.6	-	-	-	-	-	-	-	-	-
CPN + OHKM [5]	ResNet-50	Y	69.4	-	-	-	-	-	-	-	-	-
SimpleBaseline [6]	ResNet-50	Y	70.4	88.6	78.3	67.1	77.2	76.3	92.9	83.4	72.1	82.4
MRHeatNet1	ResNet-50	Y 1.5	70.2	88.5	77.6	66.8	77.2	76.2	92.8	83.0	71.8	82.4
MRHeatNet2	ResNet-50	Y 1.5	70.3	88.5	78.0	67.2	77.0	76.4	92.9	83.1	72.1	82.4
MRFeaNet1	ResNet-50	Y	70.6	88.7	78.1	67.3	77.5	76.5	92.9	83.3	72.1	82.7
MRFeaNet2	ResNet-50	Y	^ 70.9 ∠	88.8	78.3	67.2	78.1	76.8	93.0	83.6	72.2	83.4
SimpleBaseline [6]	ResNet-101	Y	71.4	89.3	79.3	68.1	78.1	77.1	93.4	84.0	73.0	83.2
MRFeaNet2	ResNet-101	Y	71.8	89.1	79.6	68.5	78.8	77.8	93.5	84.5	73.5	84.0
SimpleBaseline [6]	ResNet-152	Y	72.0	89.3	79.8	68.7	78.9	77.8	93.4	84.6	73.6	83.9
MRFeaNet2	ResNet-152	Y	72.6	89.4	80.4	69.4	79.3	78.2	93.4	85.2	74.1	84.2

- Our architectures outperform Hourglass and CPN
- With ResNet-50 backbone, Online Hard Keypoints Mining (OHKM) helps CPN gain the AP by 0.8 points, but still being 1.5 points lower than the AP of MRFeaNet2
- In comparison with SimpleBaseline, MRHeatNet has slightly worse performance, but MRFeaNet is superior
- [4]. A. Newell, K. Yang, and J. Deng, "Stacked hourglass networks for human pose estimation," in *European conference on computer vision*, 2016
- [5]. Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, "Cascaded pyramid network for multi-person pose estimation," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2018
- [6]. B. Xiao, H. Wu, and Y. Wei, "Simple baselines for human pose estimation and tracking," in *Proceedings of the European conference on computer vision*, 2018

Results on COCO test-dev dataset

Method	Backbone	Input size	AP	\mathbf{AP}^{50}	\mathbf{AP}^{75}	\mathbf{AP}^M	\mathbf{AP}^L	AR	\mathbf{AR}^{50}	\mathbf{AR}^{75}	$\mathbf{A}\mathbf{R}^M$	$\mathbf{A}\mathbf{R}^L$
	F	Bottom-up appr	oach: ke	eypoint de	etection a	nd group	ing					
OpenPose [10]	-	-	61.8	84.9	67.5	57.1	68.2	-	-	-	-	-
Associative Embedding [11]	-	-	65.5	86.8	72.3	60.6	72.6	70.2	89.5	76.0	64.6	78.1
PersonLab [12]	ResNet-152	-	68.7	89.0	75.4	64.1	75.5	75.4	92.7	81.2	69.7	83.0
MultiPoseNet [13]	-	-	69.6	86.3	76.6	65.0	76.3	73.5	88.1	79.5	68.6	80.3
	Top-down a	approach: perso	n detect	tion and s	single-per	son keyp	oint dete	ction				
Mask-RCNN [14]	ResNet-50-FPN	-	63.1	87.3	68.7	57.8	71.4	-	-	-	-	-
G-RMI [15]	ResNet-101	353×257	64.9	85.5	71.3	62.3	70.0	69.7	88.7	75.5	64.4	77.1
Integral Pose Regression [16]	ResNet-101	256×256	67.8	88.2	74.8	63.9	74.0	-	-	-	-	-
G-RMI + extra data [15]	ResNet-101	353×257	68.5	87.1	75.5	65.8	73.3	73.3	90.1	79.5	68.1	80.4
SimpleBaseline [6]	ResNet-50	256×192	70.0	90.9	77.9	66.8	75.8	75.6	94.5	83.0	71.5	81.3
SimpleBaseline [6]	ResNet-101	256×192	70.9	91.1	79.3	67.9	76.7	76.7	94.9	84.2	72.7	82.2
SimpleBaseline [6]	ResNet-152	256×192	71.6	91.2	80.1	68.7	77.2	77.2	94.9	85.0	73.4	82.6
		Our multi-resp	lution r	presentat	tion learni	ing mode	ls					
MRHeatNet1	ResNet-50	256×192	69.7	90.8	77.8	66.6	75.4	75.4	94.4	82.9	71.3	81.1
MRHeatNet2	ResNet-50	256×192	69.9	90.8	78.3	66.9	75.6	75.6	94.5	83.3	71.6	81.2
MRFeaNet1	ResNet-50	256×192	70.1	90.7	78.4	67.0	75.9	75.8	94.3	83.3	71.7	81.3
MRFeaNet2	ResNet-50	256×192	70.4	90.9	78.7	67.3	76.3	76.2	94.6	83.7	72.0	81.9
MRFeaNet2	ResNet-101	256×192	71.2	91.0	79.6	68.2	76.9	77.0	94.7	84.5	72.9	82.5

91.2

80.1

Our architectures outperform bottom-up and top-down approaches

 256×192

• In comparison with SimpleBaseline, MRFeaNet improves the AP by **0.4**, **0.3**, and **0.2** points in the case of using the ResNet-50, ResNet-101, and ResNet-152 backbone, respectively

71.8

[10]. Cao et al., 2017	[12]. Papandreou et al., 2018	[14]. He et al., 2017	[16]. Sun et al., 2018
[11]. Newell et al., 2017	[13]. Kocabas et al., 2018	[15]. Papandreou et al., 2017	[6]. Xiao et al., 2018

ResNet-152

MRFeaNet2

68.9

77.5

77.4

94.8

84.9

82.8

73.5

Our architectures outperform

numerous previous methods

Backbone network

Results on MPII dataset

Hea

74.3

95.8

Sho

49.0

90.3

Elb

40.8

80.5

Wri

34.1

74.3

Hip

36.5

77.6

Kne

34.4

69.7

Ank

35.2

62.8 | 79.6

Total

44.1

Method

Pishchulin et al. [18]

Tompson et al. [19]

MRFeaNet2¹⁵²

rompson or an [17]	70.0	, 0.0	00.0	,	, , , ,	07.7	02.0	,,,,,		
Carreira et al. [20]	95.7	91.7	81.7	72.4	82.8	73.2	66.4	81.3	•	MRFeaNet1 gains PCKh@0.5 score by
Tompson et al. [2]	96.1	91.9	83.9	77.8	80.9	72.3	64.8	82.0		0.6.0.2 and 0.2 naints compared to
Hu et al. [21]	95.0	91.6	83.0	76.6	81.9	74.5	69.5	82.4		0.6 , 0.3 and 0.2 points compared to
Pishchulin et al. [22]	94.1	90.2	83.4	77.3	82.6	75.7	68.6	82.4		SimpleBaseline in the case of using the
Lifshitz et al. [23]	97.8	93.3	85.7	80.4	85.3	76.6	70.2	85.0		
Gkioxary et al. [24]	96.2	93.1	86.7	82.1	85.2	81.4	74.1	86.1		ResNet-50, ResNet-101, and ResNet-
Rafi et al. [25]	97.2	93.9	86.4	81.3	86.8	80.6	73.4	86.3		152 backbone, respectively
Belagiannis et al. [26]	97.7	95.0	88.2	83.0	87.9	82.6	78.4	88.1		· · ·
Insafutdinov et al. [27]	96.8	95.2	89.3	84.4	88.4	83.4	78.0	88.5	•	The performance could be improved if
Wei et al. [3]	97.8	95.0	88.7	84.0	88.4	82.8	79.4	88.5		using the larger backbone network
SimpleBaseline ⁵⁰ [6]	96.4	95.3	89.0	83.2	88.4	84.0	79.6	/88.5	•	doing the larger backbone network
MRHeatNet1 ⁵⁰	96.7	95.2	88.9	83.8	88.1	83.6	78.6	88.4		
MRHeatNet2 ⁵⁰	96.8	95.5	88.6	83.8	88.5	83.6	78.7	88.5	89.9	
MRFeaNet1 ⁵⁰	96.5	95.5	89.6	84.3	88.6	84.6	80.6	89.1	89.7	
MRFeaNet2 ⁵⁰	96.6	95.4	88.9	83.9	88.5	84.6	80.9	88.9	89.5	0.4
SimpleBaseline ¹⁰¹ [6]	96.9	95.9	89.5	84.4	88.4	84.5	80.7	/ 89.1		0.7
MRHeatNet1 ¹⁰¹	96.7	95.7	89.7	84.4	89.1	84.7	81.4	89.3	9 89.3	SimpleBaseline
MRHeatNet2 ¹⁰¹	97.4	95.6	89.3	84.2	89.0	84.9	81.2	89.3	89.1	
MRFeaNet1 ¹⁰¹	96.8	95.6	89.4	84.6	89.2	85.2	81.2	89.4	₩ 88.9	→ MRHeatNet2
MRFeaNet2 ¹⁰¹	96.6	95.2	89.3	84.2	89.2	85.9	81.6	89.3	88.7	→ MRFeaNet1
SimpleBaseline ¹⁵² [6]	97.0	95.9	90.0	85.0	89.2	85.3	81.3	89.6	88.5	→ MRFeaNet2
MRHeatNet1 ¹⁵²	96.8	96.0	90.1	84.4	88.9	85.3	81.4	89.5		
MRHeatNet2 ¹⁵²	96.9	95.6	89.9	84.6	88.9	86.0	81.2	89.5	88.3	ResNet-50 ResNet-101 ResNet-152
MRFeaNet1 ¹⁵²	97.2	95.9	90.2	85.3	89.3	85.4	82.0	89.8		Resnet-30 Resnet-101 Resnet-132

81.8

89.5

88.8

85.7

85.1

89.9

96.7

95.4

Qualitative results on COCO dataset

- The case of occluded keypoints
- MRFeaNet still relatively precisely predicts the human keypoints

- Both legs of the woman are hidden under the table
- Our models can make their opinion

Qualitative results on MPII dataset

All keypoints are predicted with high confidence

Right leg and left ankle are occluded → the prediction has low confidence

Two ankles are not displayed → the prediction has very low confidence

Conclusion and Future Work

- We introduce two novel approaches for multi-resolution representation learning:
 - The first approach reconciles a multi-resolution representation learning strategy with the heatmap generator where the heatmaps are generated at each resolution of the deconvolutional layers
 - The second approach achieves the heatmap generation from each resolution of the feature extractor
- Our architectures are simple yet effective, and experiments show the superiority
 of our methods over numerous methods
- Our approaches could be applied to other tasks which have the architecture of encoder (feature extractor) and decoder (specific tasks) such as image captioning or image segmentation

Thank you!