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> Introduction

= Standard convolution is lack of context information
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> Introduction

Existing context encode method

e dilated convolution

} Still local opration
 large kernel

 Global pooling

} unadaptable
« PSP

e Self-attention —— inefficient
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> Method
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» Method
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Different way to encode contextual information

Pooling and
upsampel
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» Method

Different variants of multi-direction convolution modules
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» Method

Overview of network embedding multi-direction convolution module
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» EXxperiments

Compared segmentation results on Cityscapes validation set

Method mloU% | FLOPs Params
ResNet-18 (baseline) 61.97 103.29G | 11.85M
baseline + global 63.94 +0.48G | +0.33M
baseline + PSP [3] 68.02 +1.03G | +0.65M

baseline + ASPP [4] 68.04 | +30.81G | +3.90M
baseline + dsASPP [26] | 69.51 +36.20G | +4.44M
baseline + OC [8] 67.63 | +22.90G | +2.67/M
baseline + DA [9] 68.30 | +11.78G | +1.45M
baseline + MDCM 69.04 +8.53G | +1.12M




» EXxperiments

Compared segmentation results on VOC2012 validation set
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Method mloU% | FLOPs Params
ResNet-50 (baseline) 66.60 104.41G | 25.91M
baseline + global 67.17 +0.28G | +1.12M
baseline + PSP [3] 68.54 +0.60G +2.23M
baseline + ASPP [4] 68.14 | +59.74G | +15.11M
baseline + dsASPP [23] 68.50 | +81.90G | +20.03M
baseline + OC [§] 67.99 | +39.67G | +9.56M
baseline + DA [9] 68.48 | +97.18G | +23.73M
baseline + MDCM 69.66 | +14.18G | +3.47M
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» EXxperiments

Different kernel sizes in multi-direction convolution modules

Kernel size | Mean loU% FLLOPs Params

(baseline) 61.97 103.29G | 11.85M
1x1 68.50 +7.45G | +0.92M
3x3 69.04 +8.53G | +1.12M
3%35 69.21 +10.67G | +1.51M

X7 69.53 +13.90G | +2.10M
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» Further Analysis and Discussions

Example of empirical receptive fields.

RGB RGB

baseline baseline

ASPP

MDC MDC




School of Artificial Intelligence and Automation

uazhong University of Science and Technology

» Further Analysis and Discussions

Example of affinity maps.
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» Conclusion

Multi-Direction Convolution is able to enlarge the receptive field and encode rich
contextual information.

Multi-Direction Convolution is both effective and efficient compare with existing
methods.
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Thank you!
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