

Tongze He, Caili Guo, Yunfei Chu Beijing University of Posts and Telecommunications

OUTLINE

- Motivations
- Enhanced User Interest and Expertise
 Modeling for Expert Recommendation (EUIEM)
- Experiment:
- Conclusions & Future Work

Motivations

User Interest User Expertise

Expert Recommendation

Handcrafted features:

question features, user features, user feedback features

Deep learning methods:

high-level semantics end to end learning

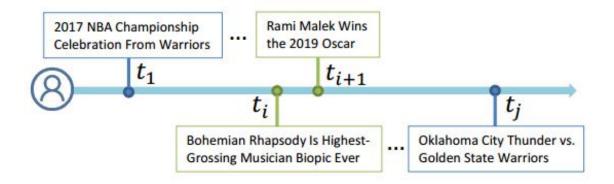
- Statistics features
- Low-level representation
- Static representation for user interest

- Implicit representation for
 - User Expertise

Thus, a learning framework that captures user interest dynamicly and models user expertise explicitly is badly needed.

Motivations

In the real-world CQA websites, **users' interest** is **changing over time**. A user may not answer the question because his current interest is not in this question domain even if he has high expertise on it.

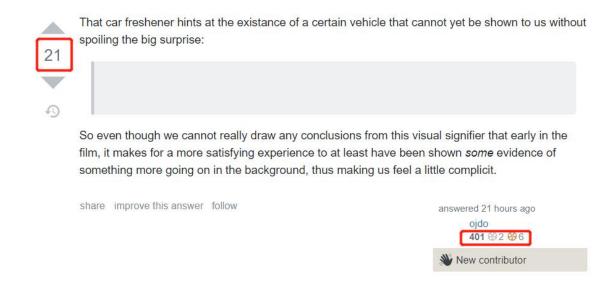


Thus:

- 1. capture users' short-term interests
- 2. combine short-term and long-term interests

Motivations

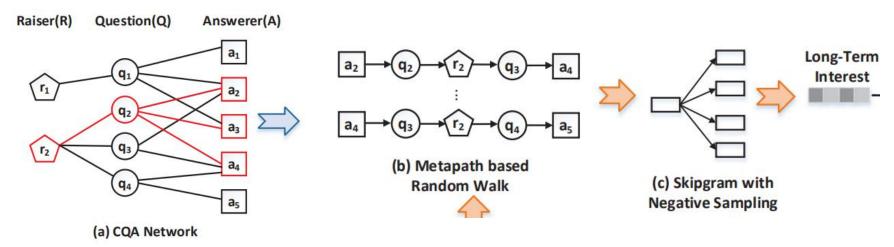
The feedback information(votes) from users' answering questions can reflect the expertise of users in this question field.



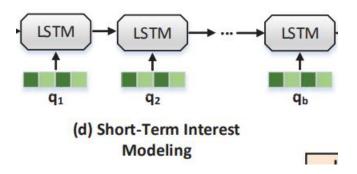
Thus:

- 1. learn the expertise embedding and interest embedding respectively.
- 2. use the feedback to learn the expertise embedding.

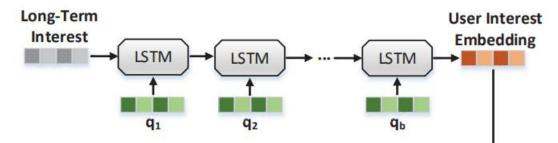
To capture the long-term interests, we use metapath based random walk and skipgram algorithm for superiority in dealing with sparsity.



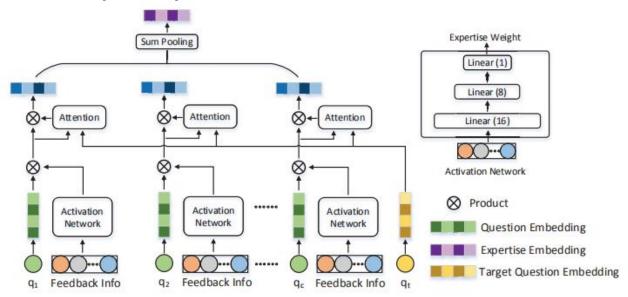
To capture the short-term interests, we input user's recent behavior into LSTM due to its remarkable ability in processing sequential data.



■ In order to combine the long-term interest and short-term interest more naturally, we use the long-term interest to initialize the first hidden state of the LSTM, So that the last hidden state is a combination of short-term and long-term interest and we use it as users' interest embedding.

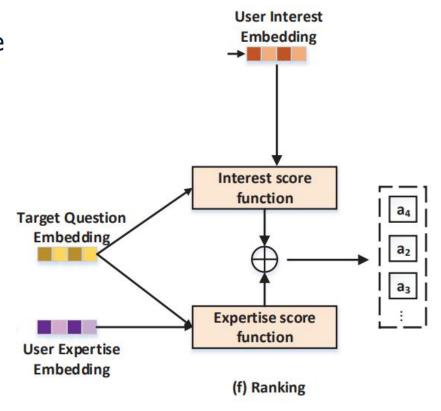


We mine user history answers and feedback to model user expertise explicitly.



We construct several statistics of the feedback and put them into a feed-forward network to get the expertise weight. We also use attention mechanisms to pay more attention to the answers which are related to the target quesiton.

- We introduce the relative rank to model the score. Given the votes of the answers, we design the following rules:
 - (1)Answerers with higher vote score higher than those with lower vote.
 - (2) Answerers who answered question score higher than those who did not.



Model Training

The ranking loss:

$$\begin{split} Obj_{rank} &= \sum_{(i,j,q_t,r) \in D_1} S(\mathbf{p}_i^a, \mathbf{e}_i^a, \mathbf{q}_t, \mathbf{p}^r) - S(\mathbf{p}_j^a, \mathbf{e}_j^a, \mathbf{q}_t, \mathbf{p}^r) + \\ &\sum_{(y,z,q_t,r) \in D_2} S(\mathbf{p}_y^a, \mathbf{e}_y^a, \mathbf{q}_t, \mathbf{p}^r) - S(\mathbf{p}_z^a, \mathbf{e}_z^a, \mathbf{q}_t, \mathbf{p}^r) \end{split}$$

We alternatively maximize the two objective functions

$$\log p(j|i) = \log \sigma(u_i^T v_j) + \sum_{l=1}^k \mathbb{E}_{j' \sim P(j')} [\log \sigma(-u_i^T v_{j'})]$$

$$\begin{split} Obj_{rank} &= \sum_{(i,j,q_t,r) \in D_1} S(\mathbf{p}_i^a, \mathbf{e}_i^a, \mathbf{q}_t, \mathbf{p}^r) - S(\mathbf{p}_j^a, \mathbf{e}_j^a, \mathbf{q}_t, \mathbf{p}^r) + \\ &\sum_{(y,z,q_t,r) \in D_2} S(\mathbf{p}_y^a, \mathbf{e}_y^a, \mathbf{q}_t, \mathbf{p}^r) - S(\mathbf{p}_z^a, \mathbf{e}_z^a, \mathbf{q}_t, \mathbf{p}^r) \end{split}$$

Experiments: dataset

Stack Exchange Dataset:

we choose two sub-dataset: Biology and English

Dataset	# of	# of r	# of q	# of a	# of	# of	
	users		1000		a/q	p/a	
Biology	5858	4176	8296	2429	6.8	3.4	
English	41013	22229	42972	23123	7.6	5.6	

Experiments

Q1: How does the proposed EUIEM perform comparing with other state-of-the-art methods?

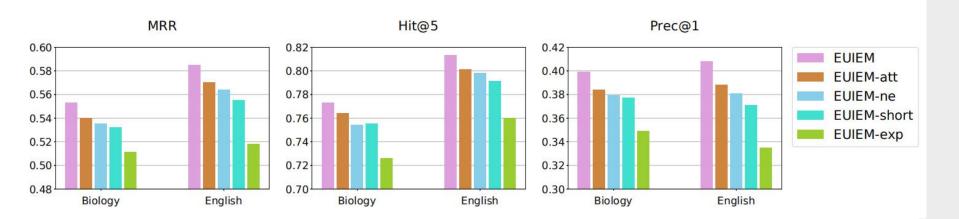
- Compared Methods:
- Metric
- Results

	T=2019-01-01						T=2018-10-01					
Method	Biology			English		Biology			English			
	MRR	Hit@5	Prec@1	MRR	Hit@5	Prec@1	MRR	Hit@5	Prec@1	MRR	Hit@5	Prec@1
Similarity	0.211	0.387	0.102	0.225	0.406	0.097	0.216	0.374	0.100	0.218	0.398	0.099
GBDT	0.329	0.491	0.203	0.372	0.612	0.188	0.301	0.483	0.185	0.362	0.600	0.192
ConvNCF	0.392	0.611	0.274	0.417	0.668	0.245	0.366	0.601	0.277	0.422	0.669	0.246
RMNL	0.483	0.697	0.315	0.491	0.717	0.336	0.488	0.691	0.317	0.492	0.708	0.331
NeRank	0.518	0.737	0.351	0.528	0.775	0.343	0.501	0.730	0.337	0.515	0.766	0.341
EUIEM	0.553	0.773	0.399	0.585	0.813	0.408	0.541	0.765	0.389	0.572	0.797	0.403

Experiments

Q2: How does the proposed EUIEM perform comparing with its variants?

- Compared variants
- Metric
- Results



Future work

- the profile of user such as user personal description should be considered to solve cold-start problem,
- the dynamic modeling of expertise can be applied since user expertise keeps improving over time.

Thanks!

Tongze He

@BUPT

tongzehe@bupt.edu.cn

